留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚格子模型对三维扭曲水翼空化现象的影响

何朋朋 李子如 张孝旺 贺伟

何朋朋, 李子如, 张孝旺, 等. 亚格子模型对三维扭曲水翼空化现象的影响[J]. 中国舰船研究, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387
引用本文: 何朋朋, 李子如, 张孝旺, 等. 亚格子模型对三维扭曲水翼空化现象的影响[J]. 中国舰船研究, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387
HE P P, LI Z R, ZHANG X W, et al. Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil[J]. Chinese Journal of Ship Research, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387
Citation: HE P P, LI Z R, ZHANG X W, et al. Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil[J]. Chinese Journal of Ship Research, 2022, 17(3): 187–195 doi: 10.19693/j.issn.1673-3185.02387

亚格子模型对三维扭曲水翼空化现象的影响

doi: 10.19693/j.issn.1673-3185.02387
基金项目: 中央高校基本科研业务费专项资金资助(215202001,2019III076GX);国家自然科学基金重点国际合作研究项目资助(51720105011);领域基金重点课题资助(61402070105)
详细信息
    作者简介:

    何朋朋,男,1991年生,博士生。研究方向:船舶推进器水动力性能。E-mail:hepengpengemail@163.com

    李子如,女,1983年生,博士,副教授。研究方向:船舶推进器水动力性能。E-mail:lisay333@163.com

    张孝旺,男,1994年生,硕士生。研究方向:船舶推进器水动力性能。E-mail:836221248@qq.com

    贺伟,男,1982年生,博士,副教授。研究方向:船舶推进器水动力性能。E-mail:hwcudca@163.com

    通信作者:

    贺伟

  • 中图分类号: U664.33

Influence of subgrid-scale models on cavitation phenomenon around a 3D twisted hydrofoil

知识共享许可协议
亚格子模型对三维扭曲水翼空化现象的影响何朋朋,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在探究三维扭曲水翼空化数值模拟中网格密度及亚格子模型的适应性问题。  方法  为此,使用大涡模拟(LES)方法和Schnerr-Sauer(S-S)空化模型对Delft Twist11N三维扭曲水翼的非定常空化流场进行数值模拟,重点研究3套不同密度的网格和WMLES,SL,WALE这3种亚格子模型对Delft Twist11N水翼空化演变过程、空化脱落频率及时均升阻力系数等的影响。  结果  结果表明:适当的网格加密形式既能够捕捉到较多的细小空泡脱落、马蹄形云空泡的初生与溃灭等非定常空化演变现象,又能够获得具有较高精度的空泡脱落频率、时均升阻力系数和时均压力分布。相较于WMLES和SL亚格子模型, WALE亚格子模型较好地捕捉到了片空泡及云空泡的演变,在预报空泡脱落频率、时均升阻力系数及压力系数方面精度较优。  结论  因此,推荐采用基于WALE亚格子模型的LES方法进行非定常云状空化的数值模拟。
  • 图  1  Twist11N水翼几何图

    Figure  1.  Geometrical views of Twist11N hydrofoil

    图  2  一半Twist11N水翼的计算域示意图

    Figure  2.  Schematics of computational domain for half-span of Twist11N hydrofoil

    图  3  Twist11N水翼周围O型分块网格的划分形式

    Figure  3.  Grid scheme of the O-shaped block around Twist11N hydrofoil

    图  4  不同网格密度下计算的空泡脱落频率

    Figure  4.  Shedding frequency of cavity for various grid schemes

    图  5  不同网格模拟的空化演变过程与试验结果对比

    Figure  5.  Comparison of cavitation evolution by various grid schemes and experimental results

    图  6  不同网格密度下计算的Lc/C值对比

    Figure  6.  Comparison of cavity length-chord ratio for various grid schemes

    图  7  不同网格密度下一个周期内升力系数时历曲线

    Figure  7.  Time histories of the lift coefficients for various grid schemes in a shedding cycle

    图  8  不同网格密度下一个周期内阻力系数时历曲线

    Figure  8.  Time histories of the drag coefficients for various grid schemes in a shedding cycle

    图  9  YC=0.12 m展向位置处水翼表面$\bar C_{\rm{p}}$的分布

    Figure  9.  The time-averaged pressure distribution $\bar C_{\rm{p}}$ around hydrofoil surface at YC=0.12 m

    图  10  YC=0.15 m展向位置处水翼表面$\bar C_{\rm{p}}$的分布

    Figure  10.  The time-averaged pressure distribution $\bar C_{\rm{p}}$ around hydrofoil surface at YC=0.15 m

    图  11  不同亚格子模型计算的空泡脱落频率

    Figure  11.  Shedding frequency of cavity for various subgrid-scale models

    图  12  不同亚格子模型模拟的空化演变过程与试验结果对比

    Figure  12.  Comparison of cavitation evolution by various subgrid-scale models and experimental results

    图  13  不同亚格子模型计算的Lc/C值对比

    Figure  13.  Comparison of cavity length-chord ratios for various subgrid-scale models

    图  14  YC=0.12 m展向位置处水翼表面$\bar C_{\rm{p}}$的分布

    Figure  14.  The time-averaged pressure distribution $\bar C_{\rm{p}}$ around hydrofoil surface at YC=0.12 m

    图  15  YC=0.15 m展向位置处水翼表面$\bar C_{\rm{p}}$的分布

    Figure  15.  The time-averaged pressure distribution $\bar C_{\rm{p}}$ around hydrofoil surface at YC=0.15 m

    表  1  Twist11N水翼网格划分参数

    Table  1.   Grid parameters of Twist11N hydrofoil

    网络编号l1l2l3l4$ y_{\max }^ + $$ \Delta x + $
    G12563101900.793112
    G23075120900.78994
    G33689143900.80380
    下载: 导出CSV

    表  2  不同网格密度下时均升阻力系数计算结果的对比

    Table  2.   Numerical results of the time-averaged lift and drag coefficient for various grid schemes

    项目G1G2G3LES[19]
    $100{\bar C_{\rm{D} } }$2.1172.0842.116
    $\bar C_{\rm{L}}$0.44120.44580.45030.4400
    ${\bar C_{\rm{L} } } 误差/\text{%}$−13.49−12.59−11.71−13.73
    下载: 导出CSV

    表  3  不同亚格子模型时均升阻力系数计算结果的对比

    Table  3.   Numerical results of the time-averaged lift and drag coefficients for various subgrid-scale models

    项目WALEWMLESSLLES[19]
    $100 {\bar C_{\rm{D} } }$2.0842.5822.564
    $\bar C_{\rm{L} }$0.44580.41560.36600.4400
    ${\bar C_{\rm{L} }} 误差/\text{%}$−12.59−18.51−28.24−13.73
    下载: 导出CSV
  • [1] KUBOTA A, KATO H, YAMAGUCHI H, et al. Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique[J]. Journal of Fluids Engineering, 1989, 111(2): 204–210. doi: 10.1115/1.3243624
    [2] KJELDSEN M, ARNDT R E A, EFFERTZ M. Spectral characteristics of sheet/cloud cavitation[J]. Journal of Fluids Engineering, 2000, 122(3): 481–487. doi: 10.1115/1.1287854
    [3] FARHAT M, AVELLAN F. On the detachment of a leading edge cavitation[J]. Cerâ mica, 2001, 49(309): 40–43.
    [4] FOETH E J. The structure of three-dimensional sheet cavitation[D]. The Netherlands: Delft University of Technology, 2008.
    [5] LI D Q, GREKULA M, LINDELL P. A modified SST k-ω turbulence model to predict the steady and unsteady sheet cavitation on 2D and 3D hydrofoils[C]//The 7th International Symposium on Cavitation. Ann Arbor, MI, USA: CAV Publishing, 2009: 1-13.
    [6] 刘登成, 洪方文. 三维水翼云空泡非定常特性数值分析及试验验证[J]. 水动力学研究与进展, 2010, 25(6): 721–726.

    LIU D C; HONG F W. The numerical analysis of unsteady performance of cavitating flow on 3D hydrofoils and comparison with experiments[J]. Chinese Journal of Hydrodynamics, 2010, 25(6): 721–726 (in Chinese).
    [7] LI Z R. Assessment of cavitation erosion with a multiphase reynolds-averaged navier-stokes method[D]. The Netherlands: Delft University of Technology, 2012.
    [8] JI B, LUO X W, ARNDT R E A, et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction[J]. Ocean Engineering, 2014, 87: 64–77. doi: 10.1016/j.oceaneng.2014.05.005
    [9] 蒲汲君, 熊鹰. 三维水翼梢涡流场数值研究[J]. 中国舰船研究, 2017, 12(1): 8–13,26. doi: 10.3969/j.issn.1673-3185.2017.01.002

    PU J J, XIONG Y. Numerical study of hydrofoil tip vortex fluid field[J]. Chinese Journal of Ship Research, 2017, 12(1): 8–13,26 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.01.002
    [10] JI B, LUO X W, ARNDT R E A, et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121–134. doi: 10.1016/j.ijmultiphaseflow.2014.10.008
    [11] WU X C, WANG Y W, HUANG C G. Effect of mesh resolution on large eddy simulation of cloud cavitating flow around a three dimensional twisted hydrofoil[J]. European Journal of Mechanics-B/Fluids, 2016, 55: 229–240. doi: 10.1016/j.euromechflu.2015.09.011
    [12] LONG X P, CHENG H Y, JI B, et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2018, 100: 41–56. doi: 10.1016/j.ijmultiphaseflow.2017.12.002
    [13] SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil[J]. Ocean Engineering, 2020, 197: 106831. doi: 10.1016/j.oceaneng.2019.106831
    [14] LILLY D K. A proposed modification of the Germano subgrid-scale closure method[J]. Physics of Fluids A:Fluid Dynamics, 1992, 4(3): 633–635. doi: 10.1063/1.858280
    [15] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3): 183–200. doi: 10.1023/A:1009995426001
    [16] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [17] COUTIER-DELGOSHA O, REBOUD J L, DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527–548.
    [18] HOEKSTRA M, VAN TERWISGA T, FOETH E J. smp’11 workshop–case 1: delftFoil[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-6.
    [19] BENSOW R E. Simulation of the unsteady cavitation on the Delft Twist11 foil using RANS, DES and LES[C]//2nd International Symposium on Marine Propulsors. Hamburg, Germany: ISMP Publishing, 2011: 1-10.
    [20] VAZ G, LLOYD T P, GNANASUNDARAM A K. Improved modelling of sheet cavitation dynamics on Delft Twist11 hydrofoil[C]//VII International Conference on Computational Methods in Marine Engineering. Nantes, France: ICCMME Publishing, 2017.
  • ZG2387_en.pdf
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  238
  • HTML全文浏览量:  52
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-24
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回