留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大容量船舶储能系统应用研究综述

方斯顿 王鸿东 张军军

方斯顿, 王鸿东, 张军军. 大容量船舶储能系统应用研究综述[J]. 中国舰船研究, 2021, 17(1): 1–15 doi: 10.19693/j.issn.1673-3185.02363
引用本文: 方斯顿, 王鸿东, 张军军. 大容量船舶储能系统应用研究综述[J]. 中国舰船研究, 2021, 17(1): 1–15 doi: 10.19693/j.issn.1673-3185.02363
FANG S D, WANG H D, ZHANG J J. A Review of large-scale shipboard energy storage systems[J]. Chinese Journal of Ship Research, 2021, 17(1): 1–15 doi: 10.19693/j.issn.1673-3185.02363
Citation: FANG S D, WANG H D, ZHANG J J. A Review of large-scale shipboard energy storage systems[J]. Chinese Journal of Ship Research, 2021, 17(1): 1–15 doi: 10.19693/j.issn.1673-3185.02363

大容量船舶储能系统应用研究综述

doi: 10.19693/j.issn.1673-3185.02363
基金项目: 国家自然科学基金资助项目(51909162);中核青年英才计划项目
详细信息
    作者简介:

    方斯顿,男,1991年生,博士,博士后研究员。研究方向:移动微电网能量管理。E-mail:sidunfang@cuhk.edu.hk

    王鸿东,男,1989年生,博士,副研究员,博士生导师。研究方向:船艇智能控制与测试。E-mail:whd302@sjtu.edu.cn

    通信作者:

    王鸿东

  • 中图分类号: U665.12

A Review of large-scale shipboard energy storage systems

  • 摘要: 储能系统是船舶中的重要设备,可承担各类船舶负荷。随着电力推进技术的成熟,全电船舶已成为未来船舶设计的主要方向。在此背景下,储能系统将由主要承担辅助负荷逐步发展为承担多类型船舶负荷,特别是作为船舶动力系统的重要组成部分与各类船舶主/辅机配合,在满足船舶各类负荷需求的前提下提高船舶的经济/环保特性。功能角色的转变加速了大规模储能系统接入船舶,带来了储能系统的状态估计、能量管理、优化规划等一系列问题。首先,对目前的储能技术进行分类;然后,介绍典型全电船舶的分类方法并指出储能系统的应用场景;最后,提出大容量储能系统接入船舶后带来的若干亟待解决的技术问题,即船舶储能系统分布式控制、船舶储能系统适应性规划与优化,以及船舶储能系统状态评估。所作研究可为未来大规模储能系统在电力化船舶上的应用研究提供参考方向。
  • 图  1  典型储能技术特性

    Figure  1.  Characteristics of typical energy storage

    图  2  全电轮渡典型的电气结构图

    Figure  2.  Typical electrical structure diagram of all-electric ferry

    图  3  工程船舶的典型电气结构图

    Figure  3.  Typical electrical structure diagram of construction ship

    图  4  邮轮及冷链运输船的典型电气结构图

    Figure  4.  Typical electrical structure diagram of cruise and cold-chain supply ship

    图  5  储能设备在全电船舶中的应用场景

    Figure  5.  Operating scenarios of energy storage system in all-electric ships

    图  6  储能状态评估[99]

    Figure  6.  State estimation of energy storage[99]

    表  1  全电船舶的类型

    Table  1.   Classifications of all-electric ships

    类型主要代表
    游客型船舶渡轮、邮轮
    商业型船舶散货运输船、集装箱运输船、
    冷链供应集装箱运输船、液化天然气船、
    离岸工作平台、其他特种船舶
    军事型船舶航空母舰、水面舰艇、潜艇、海警船
    下载: 导出CSV

    表  2  船舶电能质量标准

    Table  2.   Shipboard power quality standards

    名称总谐波
    畸变/%
    单次谐波
    畸变/%
    挪威船级社(DNV)85
    英国劳氏船级社(LRS)81.5
    美国电子和电气工程师协会(IEEE)53
    国际电工委员会(IEC)53
    美国船级社(ABS)53
    下载: 导出CSV

    表  3  部分基于燃料电池船舶实例

    Table  3.   Projects of some selected fuel cell based ships

    船名功率/kW燃料
    Viking Lady[83]330液化天然气
    SF-Breeze[84]120液氢
    PA-X-ELL[85]30甲醇
    MV Undine[86]250甲醇
    US SFC[87]2.5×103甲醇
    MC-WAP(概念研究)[88]500柴油
    MS Forester[89]100柴油
    212 submarine U31[90]330氢气
    212 submarine U32[90]240氢气
    S-80 submarine[91]300乙醇
    下载: 导出CSV
  • [1] United Nations Conference on Trade and Development. Review of maritime transport 2020[EB/OL]. https://unctad.org/webflyer/review-maritime-transport-2020.
    [2] United Nations Conference on Trade and Development. Review of maritime transport 2019[EB/OL]. https://unctad.org/webflyer/review-maritime-transport-2019.
    [3] FANG S, WANG H, Optimization-based energy management for multi-energy maritime grids [M]. Singapore: Springer, 2021.
    [4] International Maritime Organization. Revised MARPOL Annex VI: regulations for the prevention of air pollution from ships[R]. London: Marine Environment Protection Committee, 2008.
    [5] International Maritime Organization. 2012 guidelines for the development of a ship energy efficiency management plan (SEEMP)[R]. London: Marine Environment Protection Committee, 2012.
    [6] International Maritime Organization. Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI)[R]. London: Marine Environment Protection Committee, 2009.
    [7] APSLEY J M, GONZALEZ-VILLASENOR A, BARNES M, et al. Propulsion drive models for full electric marine propulsion systems[J]. IEEE Transactions on Industry Applications, 2009, 45(2): 676–684. doi: 10.1109/TIA.2009.2013569
    [8] 汪致洵, 林湘宁, 刘畅, 等. 含换电船舶电能输运航路的远洋海岛群混合电能传输网络规划[J]. 中国电机工程学报, 2019, 39(12): 3420–3433.

    WANG Z X, LIN X N, LIU C, et al. Hybrid power transmission network planning in pelagic islands based on power exchanging watercraft transport route[J]. Proceedings of the CSEE, 2019, 39(12): 3420–3433 (in Chinese).
    [9] 随权, 魏繁荣, 武传涛, 等. 面向生态友好型远洋海岛群的储电概念船舶及其供能路径优化策略研究[J]. 中国电机工程学报, 2019, 39(1): 168–181.

    SUI Q, WEI F R, WU C T, et al. Research on electric conceptual vessel and energy supply path optimization strategy for ecology-friendly pelagic clustering islands[J]. Proceedings of the CSEE, 2019, 39(1): 168–181 (in Chinese).
    [10] KUMAR D, ZARE F. A comprehensive review of maritime microgrids: system architectures, energy efficiency, power quality, and regulations[J]. IEEE Access, 2019, 7: 67249–67277. doi: 10.1109/ACCESS.2019.2917082
    [11] JIN Z M, SULLIGOI G, CUZNER R, et al. Next-generation shipboard DC power system: introduction smart grid and DC microgrid technologies into maritime electrical networks[J]. IEEE Electrification Magazine, 2016, 4(2): 45–57. doi: 10.1109/MELE.2016.2544203
    [12] NI K, HU Y H, LI X H. An overview of design, control, power management, system stability and reliability in electric ships[J]. Power Electronics and Drives, 2017, 2(37): 5–29.
    [13] GEERTSMA R D, NEGENBORN R R, VISSER K, et al. Design and control of hybrid power and propulsion systems for smart ships: a review of developments[J]. Applied Energy, 2017, 194: 30–54. doi: 10.1016/j.apenergy.2017.02.060
    [14] AL-FALAHI M D A, TARASIUK T, JAYASINGHE S G, et al. AC ship microgrids: control and power management optimization[J]. Energies, 2018, 11(6): 1458. doi: 10.3390/en11061458
    [15] KANELLOS F D. Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems[J]. IEEE Transactions on Power Systems, 2014, 29(1): 330–339. doi: 10.1109/TPWRS.2013.2280064
    [16] KANELLOS F D, TSEKOURAS G J, HATZIARGYRIOU N D. Optimal demand-side management and power generation scheduling in an all-electric ship[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1166–1175. doi: 10.1109/TSTE.2014.2336973
    [17] SHANG C, SRINIVASAN D, REINDL T. Economic and environmental generation and voyage scheduling of all-electric ships[J]. IEEE Transactions on Power Systems, 2016, 31(5): 4087–4096. doi: 10.1109/TPWRS.2015.2498972
    [18] HOU J, SUN J, HOFMANN H F. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: design and analysis[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 93–107. doi: 10.1109/JOE.2017.2674878
    [19] JAUROLA M, HEDIN A, TIKKANEN S, et al. Optimising design and power management in energy-efficient marine vessel power systems: a literature review[J]. Proceedings of the Institute of Marine Engineering & Technology, 2018, 18(2): 92–101.
    [20] HEIN K, XU Y, WILSON G, et al. Coordinated optimal voyage planning and energy management of all-electric ship with hybrid energy storage system[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2355–2365.
    [21] CHEN H S, CONG T N, YANG W, et al. Progress in electrical energy storage system: a critical review[J]. Progress in Natural Science, 2009, 19(3): 291–312. doi: 10.1016/j.pnsc.2008.07.014
    [22] ARGYROU M C, CHRISTODOULIDES P, KALOGIROU S A. Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications[J]. Renewable and Sustainable Energy Review, 2018, 94: 804–821. doi: 10.1016/j.rser.2018.06.044
    [23] CHATZIVASILEIADI A, AMPATZI E, KNIGHT I. Characteristics of electrical energy storage technologies and their applications in buildings[J]. Renewable and Sustainable Energy Review, 2013, 25: 814–830. doi: 10.1016/j.rser.2013.05.023
    [24] IBRAHIM H, ILINCA A, PERRON J. Energy storage systems—characteristics and comparisons[J]. Renewable and Sustainable Energy Review, 2008, 12(5): 1221–1250. doi: 10.1016/j.rser.2007.01.023
    [25] VAZQUEZ S, LUKIC S M, GALVAN E, et al. Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3881–3895. doi: 10.1109/TIE.2010.2076414
    [26] DUFO-LÓPEZ R, LUJANO-ROJAS J M, BERNAL-AGUSTÍN J L. Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems[J]. Applied Energy, 2014, 115: 242–253. doi: 10.1016/j.apenergy.2013.11.021
    [27] MOHOD S W, AWARE M V. Micro wind power generator with battery energy storage for critical load[J]. IEEE Systems Journal, 2012, 6(1): 118–125. doi: 10.1109/JSYST.2011.2163015
    [28] HADJIPASCHALIS I, POULLIKKAS A, EFTHIMIOU V. Overview of current and future energy storage technologies for electric power applications[J]. Renewable and Sustainable Energy Review, 2009, 13(6/7): 1513–1522.
    [29] International Electrotechnical Commission (IEC). Electrical energy storage: white paper[EB/OL]. https://www.iec.ch/basecamp?populate_search=Electrical%20energy%20storage&resource_type[3]=3.
    [30] NAIR N K C, GARIMELLA N. Battery energy storage systems: assessment for small-scale renewable energy integration[J]. Energy and Buildings, 2010, 42(11): 2124–2130. doi: 10.1016/j.enbuild.2010.07.002
    [31] HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005. doi: 10.1016/j.etran.2019.100005
    [32] JU C Q, WANG P, GOEL L, et al. A two-layer energy management system for microgrids with hybrid energy storage considering degradation costs[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6047–6057. doi: 10.1109/TSG.2017.2703126
    [33] CAI X Y, LAI L F, SHEN Z X, et al. Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells[J]. Journal of Materials Chemistry A, 2017, 5(30): 15423–15446. doi: 10.1039/C7TA04354F
    [34] LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272–288. doi: 10.1016/j.jpowsour.2012.10.060
    [35] BOOM R, PETERSON H. Superconductive energy storage for power systems[J]. IEEE Transactions on Magnetics, 1972, 8(3): 701–703. doi: 10.1109/TMAG.1972.1067425
    [36] ALAFNAN H, ZHANG M, YUAN W J, et al. Stability improvement of DC power systems in an all-electric ship using hybrid SMES/Battery[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 5700306.
    [37] BAIK S, KWON Y, PARK S, et al. Performance analysis of a superconducting motor for higher efficiency design[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5202004–5202004. doi: 10.1109/TASC.2013.2243199
    [38] PARK J D, KALEV C, HOFMANN H F. Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8): 3038–3046. doi: 10.1109/TIE.2008.918583
    [39] CHENG M, SAMI S S, WU J Z. Benefits of using virtual energy storage system for power system frequency response[J]. Applied Energy, 2017, 194: 376–385. doi: 10.1016/j.apenergy.2016.06.113
    [40] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, et al. Energy management of flywheel-based energy storage device for wind power smoothing[J]. Applied Energy, 2013, 110: 207–219. doi: 10.1016/j.apenergy.2013.04.029
    [41] SPIRYAGIN M, WOLFS P, SZANTO F, et al. Application of flywheel energy storage for heavy haul locomotives[J]. Applied Energy, 2015, 157: 607–618. doi: 10.1016/j.apenergy.2015.02.082
    [42] KOTOWICZ J, WĘCEL D, JURCZYK M. Analysis of component operation in power-to-gas-to-power installations[J]. Applied Energy, 2018, 216: 45–59. doi: 10.1016/j.apenergy.2018.02.050
    [43] BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440–2454. doi: 10.1016/j.rser.2017.09.003
    [44] U212/U214 submarines[EB/OL]. [2018-08-27]. https://www.naval-technology.com/projects/type_212/.
    [45] Fuel cell ship Alsterwasser[EB/OL]. [2018-08-27]. https://www.drewsmarine.com/en/references/passenger-ferries/fcs-alsterwasser.
    [46] SYMINGTON W P, BELLE A, NGUYEN H D, et al. Emerging technologies in marine electric propulsion[J]. Part M: Journal of Engineering for the Maritime Environment, 2016, 230(1): 187–198.
    [47] CARLTON S, ALDWINKLE J, ANDERSON J. Future ship powering options: exploring alternative methods of ship propulsion[M]. London: Royal Academy of Engineering, 2013.
    [48] ASH N, SCARBROUGH T. Sailing on solar: could green ammonia decarbonise international shipping[R]. London: Environmental Defense Fund, 2019.
    [49] ASH N, CARPENTER-LOMAX O. Zero-carbon for shipping: propelling investment in South and Central America with hydrogen-based shipping fuels [R]. Washington: Ocean Conservancy, 2020.
    [50] HE S G, WANG S F, CHEN H D, et al. A new dual-ion hybrid energy storage system with energy density comparable to that of ternary lithium ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(5): 2571–2580. doi: 10.1039/C9TA12660K
    [51] YANG X G, LIU T, WANG C Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles[J]. Nature Energy, 2021, 6(2): 176–185. doi: 10.1038/s41560-020-00757-7
    [52] AN Z J, JIA L, DING Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26(5): 391–412. doi: 10.1007/s11630-017-0955-2
    [53] Norway electric ferry cuts emissions by 95%, costs by 80%[EB/OL]. [2019-09-09]. https://reneweconomy.com.au/norway-electric-ferry-cuts-emissions-95-costs-80-65811/.
    [54] HANSEN J F, WENDT F. History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends[J]. Proceedings of the IEEE, 2015, 103(12): 2229–2242. doi: 10.1109/JPROC.2015.2458990
    [55] FERNÁNDEZ I A, GÓMEZ M R, GÓMEZ J R, et al. Review of propulsion systems on LNG carriers[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1395–1411. doi: 10.1016/j.rser.2016.09.095
    [56] MUTARRAF M U, TERRICHE Y, NIAZI K A K, et al. Energy storage systems for shipboard microgrids—a review[J]. Energies, 2018, 11(12): 3492. doi: 10.3390/en11123492
    [57] CUPELLI M, PONCI F, SULLIGOI G. Power flow control and network stability in an all-electric ship[J]. Proceedings of the IEEE, 2015, 103(12): 2355–2380. doi: 10.1109/JPROC.2015.2496789
    [58] VEKSLER A, JOHANSEN T A, SKJETNE R. Thrust allocation with power management functionality on dynamically positioned vessels[C]//Proceedings of the 2012 American Control Conference (ACC). Montreal: IEEE, 2012: 1468-1475.
    [59] FARHADI M, MOHAMMED O. Energy storage technologies for high-power applications[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 1953–1961. doi: 10.1109/TIA.2015.2511096
    [60] SAMINENI S, JOHNSON B K, HESS H L, et al. Modeling and analysis of a flywheel energy storage system for voltage sag correction[J]. IEEE Transactions on Industry Applications, 2006, 42(1): 42–52. doi: 10.1109/TIA.2005.861366
    [61] FAN B, WANG C, YANG Q M, et al. Performance guaranteed control of flywheel energy storage system for pulsed power load accommodation[J]. IEEE Transactions on Power Systems, 2018, 33(4): 3994–4004. doi: 10.1109/TPWRS.2017.2774273
    [62] MO R, LI H. Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1): 79–87. doi: 10.1109/JESTPE.2016.2642831
    [63] SCUILLER F. Study of a supercapacitor energy storage system designed to reduce frequency modulation on shipboard electric power system[C]//IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society. Montreal: IEEE, 2012: 4054-4059.
    [64] JIN Z M, MENG L X, GUERRERO J M. Hierarchical control design for a shipboard power system with DC distribution and energy storage aboard future more-electric ships[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 703–714. doi: 10.1109/TII.2017.2772343
    [65] FADDEL S, SAAD A A, YOUSSEF T, et al. Decentralized control algorithm for the hybrid energy storage of shipboard power system[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 8(1): 720–731.
    [66] KULKARNI S, SANTOSO S. Impact of pulse loads on electric ship power system: with and without flywheel energy storage systems[C]//2009 IEEE Electric Ship Technologies Symposium. Baltimore: IEEE, 2009: 568-573.
    [67] KHAN M M S, FARUQUE M O, NEWAZ A. Fuzzy logic based energy storage management system for MVDC power system of all electric ship[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 798–809. doi: 10.1109/TEC.2017.2657327
    [68] FANG S D, XU Y, LI Z M, et al. Two-step multi-objective management of hybrid energy storage system in all-electric ship microgrids[J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 3361–3373. doi: 10.1109/TVT.2019.2898461
    [69] BOVERI A, SILVESTRO F, MOLINAS M, et al. Optimal sizing of energy storage systems for shipboard applications[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 801–811. doi: 10.1109/TEC.2018.2882147
    [70] LAN H, WEN S L, HONG Y Y, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy, 2015, 158: 26–34. doi: 10.1016/j.apenergy.2015.08.031
    [71] WEN S L, LAN H, HONG Y Y, et al. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system[J]. Applied Energy, 2016, 175: 158–167. doi: 10.1016/j.apenergy.2016.05.003
    [72] FANG S D, XU Y, WEN S L, et al. Data-driven robust coordination of generation and demand-side in photovoltaic integrated all-electric ship microgrids[J]. IEEE Transactions on Power Systems, 2020, 35(3): 1783–1795. doi: 10.1109/TPWRS.2019.2954676
    [73] WEN S L, LAN H, YU D C, et al. Optimal sizing of hybrid energy storage sub-systems in PV/diesel ship power system using frequency analysis[J]. Energy, 2017, 140: 198–208. doi: 10.1016/j.energy.2017.08.065
    [74] YAO C, CHEN M Y, HONG Y Y. Novel adaptive multi-clustering algorithm-based optimal ESS sizing in ship power system considering uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33(1): 307–316. doi: 10.1109/TPWRS.2017.2695339
    [75] DOLATABADI A, MOHAMMADI-IVATLOO B. Stochastic risk-constrained optimal sizing for hybrid power system of merchant marine vessels[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5509–5517. doi: 10.1109/TII.2018.2824811
    [76] FANG S D, XU Y. Multi-objective robust energy management for all-electric shipboard microgrid under uncertain wind and wave[J]. International Journal of Electrical Power & Energy Systems, 2020, 117: 105600.
    [77] FANG S D, XU Y, WANG H D, et al. Robust operation of shipboard microgrids with multiple-battery energy storage system under navigation uncertainties[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10531–10544. doi: 10.1109/TVT.2020.3011117
    [78] FANG S D, XU Y, LI Z M, et al. Optimal sizing of shipboard carbon capture system for maritime greenhouse emission control[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5543–5553. doi: 10.1109/TIA.2019.2934088
    [79] ZHU C, LU F, ZHANG H, et al. A real-time battery thermal management strategy for connected and automated hybrid electric vehicles (CAHEVs) based on iterative dynamic programming[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8077–8084. doi: 10.1109/TVT.2018.2844368
    [80] ZHU C, LU F, ZHANG H, et al. Robust predictive battery thermal management strategy for connected and automated hybrid electric vehicles based on thermoelectric parameter uncertainty[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 1796–1805. doi: 10.1109/JESTPE.2018.2852218
    [81] ZHANG J N, ZHANG L, SUN F C, et al. An overview on thermal safety issues of Lithium-ion batteries for electric vehicle application[J]. IEEE Access, 2018, 6: 23848–23863. doi: 10.1109/ACCESS.2018.2824838
    [82] ELLIS M W, VON SPAKOVSKY M R, NELSON D J. Fuel cell systems: efficient, flexible energy conversion for the 21st century[J]. Proceedings of the IEEE, 2001, 89(12): 1808–1818. doi: 10.1109/5.975914
    [83] Viking Lady offshore supply vessel. [EB/OL]. [2018-08-27]. https://www.ship-technology.com/projects/viking-lady/.
    [84] PRATT J W, KLEBANOFF L E. Feasibility of the SF-BREEZE: a zero-emission, hydrogen fuel cell, high-speed passenger ferry [EB/OL].[2018-08-27]. https://www.maritime.dot.gov/sites/marad.dot.gov/files/docs/innovation/meta/9841/sf-breeze-ferry-feasibility-study-report-sandia-national-laboratory-2.pdf.
    [85] Pa-x-ell[EB/OL]. [2018-08-27]. https://www.e4ships.de/english/maritime-shipping/pa-x-ell-2/.
    [86] METHAPU prototypes methanol SOFC for ships[J]. Fuel Cells Bulletin, 2008, 2008(5): 4–5.
    [87] SFC fuel cells for US army, major order from German military[J]. Fuel Cells Bulletin, 2012, 2012(4): 6.
    [88] JAFARZADEH S, SCHJØLBERG I. Emission reduction in shipping using hydrogen and fuel cells[C]//Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. Trondheim: ASME, 2017: 25–30.
    [89] LEITES K, KRUMMRICH S, NEHTER P, et al. SchIBZ – application of solid oxide fuel cells for oceangoing ships[C]//5th Conference on Fundamentals and Development of Fuel Cells. Karlsruhe, Germany, 2013.
    [90] 212A class submarine[EB/OL]. [2018-08-27]. http://www.seaforces.org/marint/German-Navy/Submarine/Type-212A-class.htm.
    [91] SSK S-80 class submarine[EB/OL]. [2018-08-27]. https://www.naval-technology.com/projects/ssk-s-80-classsubmarine.
    [92] DUBEY A, SANTOSO S. Availability-based distribution circuit design for shipboard power system[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1599–1608. doi: 10.1109/TSG.2015.2493360
    [93] XU Q M, YANG B, HAN Q N, et al. Optimal power management for failure mode of MVDC microgrids in all-electric ships[J]. IEEE Transactions on Power Systems, 2019, 34(2): 1054–1067. doi: 10.1109/TPWRS.2018.2870402
    [94] GHEISARNEJAD M, KHOOBAN M H, DRAGIČEVIÉ T. The future 5G network-based secondary load frequency control in shipboard microgrids[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 836–844. doi: 10.1109/JESTPE.2019.2898854
    [95] HE L, YONG L, SHUAI Z, et al. A flexible power control strategy for hybrid AC/DC zones of shipboard power system with distributed energy storages[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5496–5508. doi: 10.1109/TII.2018.2849201
    [96] ZHANG G Q, CAI Y Z, ZHANG W D. Robust neural control for dynamic positioning ships with the optimum-seeking guidance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(7): 1500–1509. doi: 10.1109/TSMC.2016.2628859
    [97] ABKENARA T, NAZARI A, JAYASINGHE S D G, et al. Fuel cell power management using genetic expression programming in all-electric ships[J]. IEEE Transactions on Energy Conversion, 2017, 32(2): 779–787. doi: 10.1109/TEC.2017.2693275
    [98] GHENAI C, BETTAYEB M, BRDJANIN B, et al. Hybrid solar PV/PEM fuel cell/diesel generator power system for cruise ship: a case study in Stockholm, Sweden[J]. Case Studies in Thermal Engineering, 2019, 14: 100497. doi: 10.1016/j.csite.2019.100497
    [99] MISYRIS G S, MARINOPOULOS A, DOUKAS D I, et al. On battery state estimation algorithms for electric ship applications[J]. Electric Power Systems Research, 2017, 151: 115–124. doi: 10.1016/j.jpgr.2017.05.009
    [100] HU X S, FENG F, LIU K L, et al. State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. doi: 10.1016/j.rser.2019.109334
    [101] MA Z Y, WANG Z P, XIONG R, et al. A mechanism identification model based state-of-health diagnosis of Lithium-ion batteries for energy storage applications[J]. Journal of Cleaner Production, 2018, 193: 379–390. doi: 10.1016/j.jclepro.2018.05.074
    [102] ZHANG Y Z, XIONG R, HE H W, et al. Lithium-ion battery remaining useful life prediction with Box–Cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1585–1597. doi: 10.1109/TIE.2018.2808918
    [103] HU X S, JIANG J C, CAO D P, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2645–2656.
    [104] SAXENA S, HENDRICKS C, PECHT M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges[J]. Journal of Power Sources, 2016, 327: 394–400. doi: 10.1016/j.jpowsour.2016.07.057
    [105] VORONOV S, FRISK E, KRYSANDER M. Data-driven battery lifetime prediction and confidence estimation for heavy-duty trucks[J]. IEEE Transactions on Reliability, 2018, 67(2): 623–639. doi: 10.1109/TR.2018.2803798
    [106] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680–688. doi: 10.1016/j.jpowsour.2012.11.146
    [107] FANG S D, WANG Y, GOU B, et al. Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1): 207–219.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-07-09
  • 网络出版日期:  2021-07-15

目录

    /

    返回文章
    返回