Analytical and experimental research on impact load during rapid engagement of gas turbine
-
摘要:
目的 为了获取燃燃联合动力(COGAG)装置在快速并车解列过程中的冲击载荷及轴系动态响应,提出一种理论计算方法。 方法 根据同步自动换挡(SSS)离合器啮合过程中各部件的力学关系,建立离合器的动力学分析模型,并开展燃燃联合动力装置并车过程的动力学仿真和台架实验。 结果 仿真结果表明:在阻尼油腔作用的时刻,离合器螺旋花键上产生了明显的扭矩冲击,同时使离合器两端轴系产生了很强的扭矩动态响应;离合器棘轮棘爪位置的随机性将导致扭矩冲击峰值和轴系动态响应在一定范围内波动。台架实验验证了并车冲击载荷计算方法的正确性,其最大和最小扭矩的响应幅值与理论计算偏差分别为3.56%和8.86%。 结论 对于燃机快速并车过程中的扭矩冲击影响,研究成果可为燃燃联合动力装置的运行安全性评估提供参考。 Abstract:Objectives This paper proposes a theoretical calculation method for obtaining the impact load and dynamic response of shafting during the rapid engagement process of a combined gas turbine and gas turbine (COGAG) power plant. Methods According to the mechanical relationships between various components in the meshing process of a synchro-self-shifting (SSS) clutch, a dynamic analysis model of the clutch is established, and the dynamic simulation and bench test during the rapid engagement of COGAG are carried out. Results As the simulation results show, when the damping dashpot functions, a significant torque impact occurs on the clutch spiral spline which can result in a strong dynamic response on the shafting. It is also found that the relative position of the ratchet and pawl is random, which can cause the peak torque impact and dynamic response of the shafting to fluctuate within a certain range. Through a power plant experiment, the accuracy of the impact load calculation method and the randomness of the impact amplitude are verified, and the errors of the maximum and minimum torque response amplitudes are 3.56% and 8.86% respectively. Conclusions This paper finds that the rapid engagement of COGAG can produce an obvious torque impact which can affect the safety of the power plant. As such, it can provide references for the operation safety evaluation of COGAG power plants. -
表 1 主动端轴系的动力学模型参数
Table 1. Parameters of active side of dynamic model
部件名称 惯量/(kg·cm2) 刚度/(kN·m·rad−1) 内阻尼系数 并入机转子 15 825.06 78.20 0.064 惯量盘 23 078.54 326.29 0.064 离合器主动件 9 954 − − 表 2 从动端轴系的动力学模型参数
Table 2. Parameters of driven side of dynamic model
部件名称 惯量/(kg·cm2) 刚度/(kN·m·rad−1) 内阻尼系数 离合器从动件 31 377.86 46.45 0.064 小齿轮 8 616.855 − − 大齿轮 245 749.7 49.35 0.064 负载机转子 55 446.19 − − 小齿轮(分支1) 6 218.73 71.79 0.064 惯量盘(分支1) 26 697.27 78.20 0.064 工作机转子(分支1) 15 825.06 − − 表 3 双机并车台架的主要参数
Table 3. Main parameters of double engine parallel platform
设备名称 主要参数 数值 驱动电机 额定功率/ kW 4 最大转速/(r·min−1) 4 000 负载电机 额定功率/ kW 10 最大转速/(r·min−1) 2 000 SSS离合器 额定扭矩/( N·m) 200 并车齿轮箱 速比 3∶1 扭矩仪 采样率/ Hz 1 000 -
[1] 蒋德松, 田颖, 张正一, 等. CODOG系统的三S离合器的一种数学模型[J]. 哈尔滨工程大学学报, 2001, 22(4): 22–24, 60. doi: 10.3969/j.issn.1006-7043.2001.04.007JIANG D S, TIAN Y, ZHANG Z Y, et al. Mathematical model of S. S. S. based on CODOG system[J]. Journal of Harbin Engineering University, 2001, 22(4): 22–24, 60 (in Chinese). doi: 10.3969/j.issn.1006-7043.2001.04.007 [2] JIANG D S. Study on constant damping control characteristic of synchro-self-shifting clutch on combined power plant[C]//2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC). Chengdu, China: IEEE, 2010: 1–4. [3] 江嘉铭. S. S. S. 离合器的动力学仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.JIANG J M. The study of the dynamic simulation for the S. S. S. clutch[D]. Harbin: Harbin Engineering University, 2010 (in Chinese). [4] 田颖, 孙聿峰, 卢青春. 基于Matlab的自动同步离合器建模与仿真[J]. 清华大学学报(自然科学版), 2004, 44(2): 255–257, 265. doi: 10.3321/j.issn:1000-0054.2004.02.032TIAN Y, SUN Y F, LU Q C. Simulation of synchronous-self-shifting clutches based on Matlab[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(2): 255–257, 265 (in Chinese). doi: 10.3321/j.issn:1000-0054.2004.02.032 [5] 张晓云, 李淑英, 江嘉铭, 等. 船舶动力系统S. S. S.离合器运动特性仿真研究[J]. 船舶工程, 2011, 33(增刊 2): 52–56.ZHANG X Y, LI S Y, JIANG J M, et al. Simulation study on the motion characteristics of S. S. S. clutch in marine power system[J]. Ship Engineering, 2011, 33(Supp 2): 52–56 (in Chinese). [6] 张晓宁, 祝剑虹, 李淑英. 用ADAMS软件对3S离合器啮合过程的一些研究[J]. 应用科技, 2003, 30(12): 26–28. doi: 10.3969/j.issn.1009-671X.2003.12.010ZHANG X N, ZHU J H, LI S Y. Research on the engagement process of 3S clutch using ADAMS software[J]. Applied Science and Technology, 2003, 30(12): 26–28 (in Chinese). doi: 10.3969/j.issn.1009-671X.2003.12.010 [7] 魏君波. 船用大功率自动同步离合器试验[J]. 热能动力工程, 1997, 12(5): 351–353.WEI J B. Experiment research of high power marine S. S. S. clutch[J]. Journal of Engineering for Thermal Energy and Power, 1997, 12(5): 351–353 (in Chinese). [8] 张祥, 钟阿霞, 宋成军, 等. SSS离合器性能逆向试验研究[J]. 舰船科学技术, 2010, 32(8): 148–150, 156. doi: 10.3404/j.issn.1672-7649.2010.08.030ZHANG X, ZHONG A X, SONG C J, et al. The retrorse experiment research of SSS clutch's capability[J]. Ship Science and Technology, 2010, 32(8): 148–150, 156 (in Chinese). doi: 10.3404/j.issn.1672-7649.2010.08.030 [9] 张祥, 陈克鑫, 王学志, 等. 同步自动离合器并车试验研究[J]. 舰船科学技术, 2014, 36(9): 118–121. doi: 10.3404/j.issn.1672-7649.2014.09.025ZHANG X, CHEN K X, WANG X Z, et al. Experiment research of synchro-self-shifting clutches incorporation[J]. Ship Science and Technology, 2014, 36(9): 118–121 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.09.025 [10] 田颖, 牛中毅, 张正一, 等. 柴−燃联合动力装置中S. S. S. 离合器动态特性实验研究[J]. 热能动力工程, 2002, 17(1): 37–40. doi: 10.3969/j.issn.1001-2060.2002.01.011TIAN Y, NIU Z Y, ZHANG Z Y, et al. Experimental study of the dynamic characteristics of a synchronous-self-shifting (SSS) clutch for a combined diesel or gas turbine power plant[J]. Journal of Engineering for Thermal Energy and Power, 2002, 17(1): 37–40 (in Chinese). doi: 10.3969/j.issn.1001-2060.2002.01.011 [11] LUNEBURG B, KLOCKE M, KULIG S, et al. Evaluation of impact loads of clutch engaging within single shaft applications for power generation[C]//ASME Turbo Expo 2008: Power for Land, Sea, and Air. Berlin, Germany: ASME, 2008: 1227–1236. [12] 陈昊, 周瑞平, 雷俊松, 等. 燃机并入冲击载荷下推进轴系动态响应特性研究[J]. 推进技术, 2020, 41(11): 2509–2517.CHEN H, ZHOU R P, LEI J S, et al. Research on dynamic response of propulsion shafting under impact load during engaging process of gas turbine[J]. Journal of Propulsion Technology, 2020, 41(11): 2509–2517 (in Chinese). -
ZG2341_en.pdf
-