留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用弦式系泊系统的海洋平台水动力性能数值模拟研究

付冲 赵刘群 孙雷

付冲, 赵刘群, 孙雷. 采用弦式系泊系统的海洋平台水动力性能数值模拟研究[J]. 中国舰船研究, 2022, 17(X): 1–16 doi: 10.19693/j.issn.1673-3185.02338
引用本文: 付冲, 赵刘群, 孙雷. 采用弦式系泊系统的海洋平台水动力性能数值模拟研究[J]. 中国舰船研究, 2022, 17(X): 1–16 doi: 10.19693/j.issn.1673-3185.02338
FU C, ZHAO L Q, SHUN L. Numerical simulation research on hydrodynamic performance of platform with string-type mooring system[J]. Chinese Journal of Ship Research, 2022, 17(X): 1–16 doi: 10.19693/j.issn.1673-3185.02338
Citation: FU C, ZHAO L Q, SHUN L. Numerical simulation research on hydrodynamic performance of platform with string-type mooring system[J]. Chinese Journal of Ship Research, 2022, 17(X): 1–16 doi: 10.19693/j.issn.1673-3185.02338

采用弦式系泊系统的海洋平台水动力性能数值模拟研究

doi: 10.19693/j.issn.1673-3185.02338
基金项目: 国家自然科学基金项目资助(52061135107,51679035);辽宁省“兴辽英才计划”项目资助(XLYC1908027);中央高校基本科研业务费项目资助(DUT20TD108)
详细信息
    作者简介:

    付冲,男,1994年生,硕士生。研究方向:船舶与海洋工程水动力性能及系泊系统设计。E-mail:fuchong1276@163.com

    赵刘群,男,1981年生,硕士生,高级工程师

    孙雷,男,1982年生,博士,副教授

    通信作者:

    孙雷

  • 中图分类号: U667.4

Numerical simulation research on hydrodynamic performance of platform with string-type mooring system

  • 摘要:   目的  弦式系泊系统是针对特种海洋平台的永久靠泊需求而提出,需要研究采用该系统的平台的水动力性能,以验证其对永久靠泊需求的适应性。  方法  首先,基于三维势流理论,采用边界元方法建立码头靠泊平台数值模型,并对不同码头潮位条件下的系泊平台进行频域数值模拟;然后,在时域模拟中引入弦式系泊和传统码头缆绳系泊2种不同的系泊系统,模拟系泊平台在极端波浪作用下的表现,参数化分析码头潮位对系泊平台运动响应的影响。  结果  结果显示,弦式系泊系统通过提供全方向的回复力,加强了平台转动运动限制,大幅削弱了系泊平台的横摇运动,能将环境载荷能量转移到平动运动,进而加强了对平台整体运动的限制;系泊平台的运动范围均衡且稳定可控;该系统对平台的运动限制效果受码头潮位变化影响小。  结论  研究表明弦式系泊系统相较于传统码头缆绳系泊更适应特种海洋平台的永久靠泊需求。
  • 图  1  弦式系泊原理图

    1-连接接头;2-钢缆;3-导缆限位机构;4-弹性机构;5-平衡位置调节&固定机构;6-码头;7-护舷;8-连接臂;9-系泊平台;10-平台连接点;11-线性刚度缆;12-固定连接点;13-线性护舷;14-码头;15-系泊平台

    Figure  1.  Schematic diagram of string-type mooring

    图  2  弦式系泊系统布置示意图

    Figure  2.  Schematic diagram of string-type mooring system layout

    图  3  系泊平台模型图

    Figure  3.  Mooring platform model

    图  4  弦式系泊平台计算模型图

    Figure  4.  Schematic diagram of calculation model of string-type mooring platform

    图  5  缆绳系泊平台计算模型图

    Figure  5.  Schematic diagram of calculational model of cable mooring platform

    图  6  验证模型平面视图

    Figure  6.  Plan view of the verify model

    图  7  验证模型FPSO平台网格剖分

    Figure  7.  Grid generation of verification model FPSO platform

    图  8  船舶在90°浪向下的运动响应幅值算子

    Figure  8.  RAO of the ship in the waves of 90°

    图  9  船舶在120°浪向下的运动响应幅值算子

    Figure  9.  RAO of the ship in the waves of 120°

    图  10  船舶在180°浪向下的运动响应幅值算子

    Figure  10.  RAO of the ship in the waves of 180°

    图  11  系泊平台及码头的网格划分

    Figure  11.  Grid generation of mooring platform and wharf

    图  12  系泊平台在90°浪向下的运动响应幅值算子

    Figure  12.  RAO of the mooring platform in the waves of 90°

    图  13  系泊平台在最高潮位下的运动时历曲线

    Figure  13.  Time history curves of motion of mooring platform under highest tidal level

    图  14  不同潮位下靠泊平台的横摇运动响应幅值算子

    Figure  14.  Rolling RAOs of berthing platform at different tide levels

    图  15  不同潮位下靠泊平台的横摇水动力系数

    Figure  15.  Rolling hydrodynamic coefficients of berthing platform at different tide levels

    图  16  系泊平台各运动幅度随潮位的变化情况

    Figure  16.  Variation of 6-DOF motion range of mooring platform with tide levels

    图  17  系泊平台各运动范围随潮位的变化情况

    Figure  17.  Variation of 6-DOF motion limit of mooring platform with tide levels

    图  18  平台各运动均值随潮位变化曲线

    Figure  18.  Variation of mean motion of platform with tide level

    图  19  平台各运动幅度随风向变化曲线

    Figure  19.  Variation curves of platform movement range with wind direction

    图  20  弦式系泊平台运动均值随风向变化图

    Figure  20.  Variation of mean motion of string-type mooring platform with wind direction

    图  21  缆绳系泊平台运动均值随风向变化图

    Figure  21.  Variation of mean motion of cable mooring platform with wind direction

    表  1  系泊平台参数

    Table  1.   The parameters of mooring platform

    参数数值
    船长/m120
    水线长/m115
    型宽/m30
    型深/m16
    吃水/m8
    排水量/t24 347
    重心纵向位置(距艉垂线) /m54
    重心垂向位置(距基线) /m11
    横摇惯性半径/m11
    纵摇惯性半径/m28.75
    转艏惯性半径/m28.75
    下载: 导出CSV

    表  2  码头及潮位参数

    Table  2.   The parameters of wharf and tide level

    参数数值
    潮差/m2.5
    最低潮位/m9.6
    码头面高程/m14.1
    护舷间隙/m1
    下载: 导出CSV

    表  3  潮位工况表

    Table  3.   Tide level condition table

    潮位水深/m
    最高12.1
    3/411.475
    1/210.85
    1/410.225
    最低9.6
    下载: 导出CSV

    表  4  波浪环境参数

    Table  4.   Environmental parameters of wind and wave

    参数数值
    有义波高/m3.47
    周期/s6.02
    谱峰周期/s7.83
    浪向/(°)90
    下载: 导出CSV

    表  5  风载荷工况

    Table  5.   Wind load condition

    风向/(°)风速/(m·s−1)类型
    028定常风
    4528定常风
    9028定常风
    13528定常风
    18028定常风
    22528定常风
    27028定常风
    31528定常风
    下载: 导出CSV

    表  6  验证模型的主尺度

    Table  6.   Main dimensions of the verify model

    参数数值
    垂线间长/m285
    船宽/m63
    吃水/m13
    排水量/t225 518
    重心纵向位置(距艉垂线)/m142.5
    重心垂向位置(距基线)/m16.5
    横摇惯性半径/m19.45
    纵摇惯性半径/m71.25
    艏摇惯性半径/m71.25
    下载: 导出CSV

    表  7  各网格尺寸下系泊平台RAO峰值结果对比

    Table  7.   RAO peak results of mooring platform under various grid sizes

    网格尺寸/m横摇RAO峰值/(°)横荡RAO峰值/m升沉RAO峰值/m
    2.38.704.351.40
    1.88.744.351.40
    1.28.824.351.40
    0.98.824.351.40
    下载: 导出CSV

    表  8  各时间步长下系泊平台运动均值结果对比

    Table  8.   The mean motion of mooring platform under different time steps

    时间步长/s横摇均值/(°)横荡均值/m升沉均值/m
    0.05−0.24−0.820.06
    0.10−0.24−0.820.06
    0.20−0.23−0.810.04
    下载: 导出CSV

    表  9  不同潮位下系泊平台六自由度幅度

    Table  9.   6-DOF motion range of mooring platform at different tide levels

    潮位缆绳系泊弦式系泊
    横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m
    最高16.731.032.101.182.943.6514.440.612.651.994.183.54
    3/416.320.942.081.173.093.2912.660.492.722.164.443.27
    1/217.590.832.251.273.352.9111.170.452.942.414.572.90
    1/417.050.752.221.333.332.469.230.522.622.384.492.44
    最低15.630.642.271.293.341.927.570.572.482.324.321.90
    下载: 导出CSV

    表  10  系泊平台六自由度运动数据最值

    Table  10.   The maximum values 6-DOF motion data of mooring platform

    潮位运动方向缆绳系泊弦式系泊
    横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m
    最高正向1.290.451.110.750.571.546.330.251.200.930.551.84
    负向−15.44−0.57−0.99−0.43−2.37−2.11−8.10−0.36−1.44−1.06−3.62−1.70
    3/4正向1.410.391.130.710.561.365.530.191.311.000.551.66
    负向−14.91−0.55−0.95−0.46−2.52−1.92−7.13−0.30−1.41−1.15−3.89−1.61
    1/2正向1.960.331.280.730.571.204.890.181.441.090.561.42
    负向−15.64−0.50−0.98−0.53−2.78−1.71−6.29−0.27−1.50−1.32−4.02−1.48
    1/4正向2.670.301.260.760.561.023.910.211.271.060.561.13
    负向−14.38−0.45−0.96−0.57−2.77−1.45−5.32−0.30−1.35−1.32−3.93−1.31
    最低正向3.070.281.290.670.560.773.120.221.181.060.590.87
    负向−12.57−0.36−0.98−0.62−2.79−1.15−4.44−0.35−1.30−1.26−3.73−1.03
    下载: 导出CSV

    表  11  系泊平台六自由度运动均值表

    Table  11.   6-DOF motion mean of mooring ship

    潮位缆绳系泊弦式系泊
    横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m
    最高−4.35−0.02−0.010.08−0.42−0.05−0.36−0.03−0.06−0.08−0.960.07
    3/4−3.84−0.020.000.07−0.44−0.05−0.36−0.03−0.05−0.09−1.070.06
    1/2−3.33−0.02−0.010.08−0.49−0.04−0.39−0.03−0.04−0.08−1.140.05
    1/4−2.83−0.02−0.010.09−0.51−0.03−0.44−0.02−0.02−0.06−1.160.05
    最低−2.33−0.020.000.08−0.52−0.03−0.51−0.020.00−0.03−1.120.04
    下载: 导出CSV

    表  12  各风向下系泊平台六自由度运动幅度

    Table  12.   6-DOF motion range of mooring platform in each wind direction

    风向/(°)弦式系泊缆绳系泊
    横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m
    无风14.4380.6072.6491.9884.1773.54016.7301.0282.0991.1802.9433.651
    014.5500.6282.6512.0264.1683.53616.4581.0692.1241.1222.9413.647
    4514.9700.6062.5472.0674.1493.53116.3901.0422.1691.1212.9873.632
    9014.6680.5892.4462.0284.1433.53316.5041.0012.1101.0733.0893.624
    13514.3930.5892.4562.0614.1433.54616.8540.9892.0771.1332.9303.638
    18014.5610.5872.5781.9574.1653.55716.7420.9792.0221.1762.9433.650
    22514.0650.5882.5952.0794.1843.55516.9310.9801.9541.1492.9713.665
    27014.0080.5992.6892.1164.1933.55516.8611.0041.9451.1532.9723.668
    31514.1510.6142.6012.2254.1823.54916.8301.0361.9871.1392.9523.664
    下载: 导出CSV

    表  13  各风向下系泊平台六自由度运动均值表

    Table  13.   6-DOF motion mean of mooring platform in each wind direction

    风向/(°)弦式系泊缆绳系泊
    横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m横摇/(°)纵摇/(°)转艏/(°)纵荡/m横荡/m升沉/m
    无风−0.358−0.032−0.056−0.080−0.9610.071−4.346−0.025−0.0060.077−0.417−0.050
    0−0.353−0.033−0.0420.001−0.9590.071−4.352−0.027−0.0260.116−0.416−0.050
    45−0.350−0.033−0.050−0.022−0.9230.070−4.263−0.027−0.0190.104−0.398−0.050
    90−0.348−0.032−0.062−0.084−0.9060.069−4.216−0.026−0.0040.076−0.390−0.049
    135−0.349−0.031−0.066−0.138−0.9210.070−4.241−0.0240.0090.049−0.397−0.050
    180−0.354−0.031−0.066−0.159−0.9590.072−4.340−0.0220.0140.038−0.417−0.050
    225−0.359−0.031−0.058−0.130−0.9900.073−4.453−0.0220.0060.049−0.438−0.051
    270−0.360−0.031−0.047−0.072−1.0020.073−4.507−0.024−0.0090.077−0.448−0.052
    315−0.358−0.032−0.040−0.019−0.9900.072−4.472−0.026−0.0220.104−0.439−0.051
    下载: 导出CSV
  • [1] International Atomic Energy Agency. Legal and institutional issues of transportable nuclear power plants: a preliminary study[R]. Vienna: IAEA, 2013: 95.
    [2] STANDRING M D W. Floating nuclear power plants and associated technologies in the northern areas[R]. Østerås: Norwegian Radiation Protection Authority, 2008.
    [3] 张延昌, 景宝金, 童波, 等. 浮动核电站载体平台安全性设计初探[J]. 船舶, 2017, 28(3): 1–9.

    ZHANG Y C, JING B J, TONG B, et al. Safety design of carrier platform for floating nuclear power plant[J]. Ship & Boat, 2017, 28(3): 1–9 (in Chinese).
    [4] 郭建廷. 船舶码头系泊形式及水动力性能分析[D]. 镇江: 江苏科技大学, 2016.

    GUO J T. The forms of ship mooring and the analysis of their hydrodynamic performance at the dock[D]. Zhenjiang: Jiangsu University of Science and Technology, 2016 (in Chinese).
    [5] 孙雷, 付冲, 林哲. 一种用于长期靠泊的系泊装置: CN, 210797439U[P]. 2020-06-19.

    SUN L, FU C, LIN Z. Long-term mooring device: CN, 210797439U[P]. 2020-06-19 (in Chinese).
    [6] 孙雷, 付冲, 林哲. 一种弦式系泊系统: CN, 210827340U[P]. 2020-06-23.

    SUN L, FU C, LIN Z. String-type mooring system: CN, 210827340U[P]. 2020-06-23 (in Chinese).
    [7] 孙雷, 付冲, 林哲. 一种提供全向回复力的系泊装置: CN, 210827339U[P]. 2020-06-23.

    SUN L, FU C, LIN Z. Mooring device capable of providing omnidirectional restoring force: CN, 210827339U[P]. 2020-06-23 (in Chinese).
    [8] 孙雷, 罗贤成, 姜胜超, 等. 适用于渤海海域浮式核电平台水动力特性研究基础与展望[J]. 装备环境工程, 2018, 15(4): 19–27.

    SUN L, LUO X C, JIANG S C, et al. Research foundation and prospect of hydrodynamic performance of floating nuclear power platform in Bohai Sea Area[J]. Equipment Environmental Engineering, 2018, 15(4): 19–27 (in Chinese).
    [9] VAN OORTMERSSEN I. The motions of a moored ship in waves[D]. The Netherlands: Delft University of Technology, 1976.
    [10] 肖龙飞, 杨建民, 胡志强. 极浅水单点系泊FPSO低频响应分析[J]. 船舶力学, 2010, 14(4): 372–378. doi: 10.3969/j.issn.1007-7294.2010.04.007

    XIAO L F, YANG J M, HU Z Q. Analysis on the low frequency response of a single point moored FPSO in ultra-shallow water[J]. Journal of Ship Mechanics, 2010, 14(4): 372–378 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.04.007
    [11] TAYLOR R E, CHAU F P. Wave diffraction theory—some developments in linear and nonlinear theory[J]. Journal of Offshore Mechanics and Arctic Engineering, 1992, 114(3): 185–194. doi: 10.1115/1.2919970
    [12] TENG B, TAYLOR R E. New higher-order boundary element methods for wave diffraction/radiation[J]. Applied Ocean Research, 1995, 17(2): 71–77. doi: 10.1016/0141-1187(95)00007-N
    [13] CUMMINS W E. The impulse response function and ship motions[J]. Schiffstechnik, 1962, 47(9): 101–109.
    [14] 中华人民共和国交通运输部. 海港总体设计规范: JTS 165-2013[S]. 北京: 人民交通出版社, 2013.

    Ministry of Transport of the People's Republic of China. Design code of general layout for sea ports: JTS 165-2013[S]. Beijing: China Communication Press, 2013 (in Chinese).
    [15] NAM B W, KIM Y, KIM D W, et al. Experimental and numerical studies on ship motion responses coupled with sloshing in waves[J]. Journal of Ship Research, 2009, 53(2): 68–82. doi: 10.5957/jsr.2009.53.2.68
  • 加载中
图(21) / 表(13)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  34
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-05-20
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回