Warship operational readiness integrity evaluation method based on cloud model
-
摘要:
目的 针对现有的舰船战备完好性评估方法已无法满足海军任务保障需求这一问题,提出基于云模型的新型评估方法。 方法 首先,在指标确定过程中,基于合作博弈权重方法,将层次分析法、熵权法和灰色关联度法所计算的权重进行合作博弈,从而拟合得到组合定权重,并引入变权重理论对定权重进行修正优化;然后,引入云模型理论,利用云相似度替代隶属度,设计基于云模型的模糊综合评估模型;最后,以舰船对空防御任务为例,评估舰船战备完好性。 结果 仿真结果表明:变权重模式下,基于云模型的模糊综合评估结果可以更准确地反映实船战备状态。 结论 研究成果可为舰船战备完好性评估提供参考。 Abstract:Objective Aiming at the problem that existing ship combat readiness assessment methods cannot meet the needs of naval mission support, a ship combat readiness assessment method based on cloud model theory is proposed. Methods First, in the process of determining the index, based on the cooperative game weight method, the weights calculated by the analytic hierarchy process, entropy weight method and grey correlation method are used for the cooperative game in order to fit the combined fixed weight, and variable weight theory is introduced to modify and optimize the fixed weight. The cloud model theory is then introduced, and a fuzzy comprehensive assessment model based on the cloud model is designed using cloud similarity instead of membership degree. Finally, taking air defense tasks as an example, the combat readiness of the ship is assessed. Results The simulation results show that under the variable weight mode, the fuzzy comprehensive evaluation results based on the cloud model can more accurately reflect the combat readiness of real ships. Conclusion The results of this study can provide references for ship combat readiness assessment. -
表 1 舰船对空防御系统指标的评估等级云模型参数
Table 1. Parameters of hierarchical cloud model for evaluation of ship air defense system index
系统 指标 正常 注意 异常 严重 雷达 航迹
稳定度(2.032, 21.250 3, 0.195 87) (3.999 6, 1.878 1, 0.133 72) (6.844 5, 1.853 6, 0.029 128) (9.498 5, 0.933 69, 0.164 57) 探测
距离/km(500.96, 62.569, 8.249 3) (395.81, 61.799, 6.903 1) (298.72, 62.230, 8.948 1) (145.38, 95.021, 7.438 2) 距离
精度/m(94.546, 12.273, 1.838 4) (129.44, 9.125 6, 1.326 4) (159.84, 11.574, 1.733 4) (198.02, 10.973, 1.687 5) 方位
精度/(°)(0.307 78, 0.183 69, 0.072 371) (0.597 74, 0.061 88, 0.023 38) (0.698 09, 0.061 37, 0.012 391) (0.953 30, 0.092 23,0.034 195) 指挥
系统指示距离
精度/m(96.369, 11.052, 1.348 2) (132.44, 10.057 3, 1.058 7) (164.96, 9.812, 1.934) (203.14, 12.024, 1.368 7) 指示方位
精度/(°)(0.351 41, 0.121 54, 0.015 243) (0.612 72, 0.025 78, 0.019 417) (0.743 54, 0.054 24, 0.016 923) (1.025 4, 0.071 25, 0.015 635) 融合距离
精度/m(93.158, 9.157 4, 1.761 2) (128.42, 8.157 4, 0.935 8) (158.94, 10.614 7, 1.224 1) (206.48, 9.444 7, 1.414 5) 融合方位
精度/(°)(0.297 28, 0.283 78, 0.062 521) (0.637 25, 0.042 52, 0.017 257) (0.725 24, 0.055 75, 0.024 748) (0.982 52, 0.082 57, 0.023 622) 舰炮 目标拦截
距离/km(102.15, 9.158 7, 1.578 4) (82.348, 10.135 9, 1.264 7) (67.274 1, 7.569 5, 1.415 6) (49.154 2, 8.154 3, 1.475 6) 系统反应
时间/s(2.963 9, 1.458 1, 0.091 48) (5.143 9, 1.292 5, 0.126 1) (7.265 9, 1.744 9, 0.091 58) (10.267, 1.659 1, 0.117 8) 火控俯仰
精度/mrad(0.091 48, 0.091 21, 0.001 548) (0.223 91, 0.133 24, 0.001 477) (0.401 88, 0.117 41, 0.010 216) (0.532 21, 0.123 17, 0.002 544) 导弹 目标拦截
距离/km(198.19, 9.315 4, 0.915 43 ) (167.63, 7.115 6, 1.741 5) (131.36, 10.684, 1.125 5) (98.173 6, 8.147 5, 0.812 56) 系统反应
时间/s(3.156 4, 1.684 1, 0.083 61) (5.795 2, 1.365 7, 0.121 5) (7.513 6, 0.921 64, 0.113 61) (10.364, 1.352 4, 0.181 4) 火控俯仰
精度/mrad(0.121 87, 0.086 14, 0.002 541) (0.257 81, 0.136 21, 0.001 271) (0.387 32, 0.093 18, 0.008 121) (0.517 25, 0.136 54, 0.001 325) 表 2 s(x)的有效积分范围
Table 2. Effective integral range of s(x)
相交情形 积分范围$ \left[ {{x_{\min }},{x_{\max }}} \right] $ 情形1 $[E{x}_{{\text{II}}}-3E{n}_{{\text{II}}},E{x}_{{\text{I}}}+3E{n}_{{\text{I}}}]$ 情形2 $\left[ {E{x_{\text{II}}} - 3E{n_{\text{II}}} } \right.,\left. {E{x_{\text{II}}} + 3E{n_{\text{II}}} } \right]$ 情形3 $\left[ {E{x_{\text{I}}} - 3E{n_{\text{I}}} } \right.,\left. {E{x_{\text{I}}} + 3E{n_{\text{I}}} } \right]$ 表 3 舰船系统战备完好性指标单项评估结果
Table 3. Single evaluation result of combat readiness index of ship system
指标名称 归一化平均数据 单项评估结果(云相似度) 评估等级 航迹稳定度 0.917 (0.906, 0.094, 0, 0) 正常 雷达探测距离 0.922 (0.911, 0.089 0, 0) 正常 雷达距离精度 0.676 (0.013, 0.346, 0.641, 0) 异常 雷达方位精度 0.747 (0.178, 0.701,0.121, 0) 注意 指示距离精度 0.508 (0,0.269, 0.393, 0.338) 异常 指示方位精度 0.632 (0, 0.264, 0.659, 0.077) 异常 融合距离精度 0.897 (0.881, 0.115, 0.004, 0) 正常 融合方位精度 0.869 (0.826, 0.151, 0.023, 0) 正常 舰炮目标拦截距离 0.698 (0, 0, 0.879, 0.121) 异常 舰炮系统反应时间 0.878 (0.784, 0.211, 0.005, 0) 正常 舰炮火控俯仰精度 0.648 (0, 0, 0.826 0.174) 异常 导弹目标拦截距离 0.815 (0.796, 0.202, 0.002, 0) 正常 导弹系统反应时间 0.965 (0.923, 0.077, 0, 0) 正常 导弹火控俯仰精度 0.946 (0.914, 0.086, 0, 0) 正常 表 4 定权重评估结果
Table 4. Fixed weight evaluation results
指标 综合评估向量 评估等级 雷达系统(元件层) (0.509, 0.311, 0.178, 0) 正常 指挥系统(元件层) (0.515, 0.184, 0.215, 0.09) 正常 舰炮系统(元件层) (0.235, 0.063, 0.602, 0.101) 异常 导弹系统(元件层) (0.856, 0.142, 0.001, 0) 正常 对空防御系统(系统层) (0.576, 0.168, 0.212, 0.054) 正常 表 5 变权重评估结果
Table 5. Variable weight evaluation results
指标 综合评估向量 评估等级 雷达系统(元件层) (0.363, 0.375, 0.262, 0) 注意 指挥系统(元件层) (0.315, 0.211, 0.347, 0.127) 异常 舰炮系统(元件层) (0.129, 0.051,0.735,0.085) 异常 导弹系统(元件层) (0.806,0.192, 0.002, 0) 正常 对空防御系统(系统层) (0.370, 0.159, 0.397, 0.074) 异常 -
[1] 程文鑫, 焦自平, 白桦, 等. 武器系统使用可用性评估模型及应用[J]. 海军工程大学学报, 2002, 14(1): 81–84. doi: 10.3969/j.issn.1009-3486.2002.01.022CHENG W X, JIAO Z P, BAI H, et al. The evaluation model of weapon system operational availability and its application[J]. Journal of Naval University of Engineering, 2002, 14(1): 81–84 (in Chinese). doi: 10.3969/j.issn.1009-3486.2002.01.022 [2] 程莉莉, 罗威, 胡芷毅, 等. 舰载作战系统战备状态评价方法研究[J]. 计算机与数字工程, 2017, 45(9): 1790–1794. doi: 10.3969/j.issn.1672-9722.2017.09.021CHENG L L, LUO W, HU Z Y, et al. Research on evaluation of the ship-borne combat system operational states[J]. Computer and Digital Engineering, 2017, 45(9): 1790–1794 (in Chinese). doi: 10.3969/j.issn.1672-9722.2017.09.021 [3] 谢宗仁, 吕建伟, 徐一帆, 等. 大型武器装备总体战备完好性的多层次协调优化[J]. 系统工程与电子技术, 2017, 39(12): 2729–2737. doi: 10.3969/j.issn.1001-506X.2017.12.15XIE Z R, LV J W, XU Y F, et al. Multi-level coordinated optimization of major weapon equipment's overall operational readiness indicators[J]. Systems Engineering and Electronics, 2017, 39(12): 2729–2737 (in Chinese). doi: 10.3969/j.issn.1001-506X.2017.12.15 [4] ZHENG K, HAN L N, GUO S L, et al. Fuzzy synthetic condition assessment of wind turbine based on combination weighting and cloud model[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(6): 4563–4572. [5] 魏勇, 徐廷学, 逄大鹏. 基于任务的舰炮装备战备完好性建模与仿真研究[J]. 火炮发射与控制学报, 2010(4): 15–19. doi: 10.3969/j.issn.1673-6524.2010.04.004WEI Y, XU T X, PANG D P. Modelling and simulation research on operational readiness of naval gun weapon equipment based on mission[J]. Journal of Gun Launch & Control, 2010(4): 15–19 (in Chinese). doi: 10.3969/j.issn.1673-6524.2010.04.004 [6] 程文鑫, 陈立强, 龚沈光, 等. 基于蒙特卡洛法的舰船装备战备完好性仿真[J]. 兵工学报, 2006, 27(6): 1090–1094. doi: 10.3321/j.issn:1000-1093.2006.06.030CHENG W X, CHEN L Q, GONG S G, et al. Readiness simulation of ship equipment based on Monte-Carlo method[J]. Acta Armamentarii, 2006, 27(6): 1090–1094 (in Chinese). doi: 10.3321/j.issn:1000-1093.2006.06.030 [7] 李军亮, 滕克难, 徐吉辉, 等. 军用飞机机群战备完好性研究[J]. 现代防御技术, 2017, 45(3): 147–154. doi: 10.3969/j.issn.1009-086x.2017.03.024LI J L, TENG K N, XU J H, et al. Military aircraft fleet operational readiness research[J]. Modern Defense Technology, 2017, 45(3): 147–154 (in Chinese). doi: 10.3969/j.issn.1009-086x.2017.03.024 [8] 李康, 黄之杰, 朱倩. 航空地面电源车战备完好性评价建模仿真[J]. 军事交通学院学报, 2017, 19(10): 24–28, 32.LI K, HUANG Z J, ZHU Q. Modeling and simulation on operational readiness of aerial power supply vehicle[J]. Journal of Academy of Military Transportation, 2017, 19(10): 24–28, 32 (in Chinese). [9] CHEN J, LU B. Research on universal fuzzy neural comprehensive evaluation network[C]//2007 International Conference on Machine Learning and Cybernetics. Hong Kong, China: IEEE, 2007. [10] 陈伟, 夏建华. 综合主、客观权重信息的最优组合赋权方法[J]. 数学的实践与认识, 2007, 37(1): 17–22. doi: 10.3969/j.issn.1000-0984.2007.01.004CHEN W, XIA J H. An optimal weights combination method considering both subjective and objective weight information[J]. Mathematics in Practice and Theory, 2007, 37(1): 17–22 (in Chinese). doi: 10.3969/j.issn.1000-0984.2007.01.004 [11] DEVANNEAUX V, KABBAJ H, DAGUES B, et al. An accurate model of squirrel cage induction machines under rotor faults[C]//Proceedings of the Fifth International Conference on Electrical Machines and Systems. Shenyang, China: IEEE, 2003. [12] 李德清, 崔红梅, 李洪兴. 基于层次变权的多因素决策[J]. 系统工程学报, 2004, 19(3): 258–263. doi: 10.3969/j.issn.1000-5781.2004.03.007LI D Q, CUI H M, LI H X. Multifactor decision making based on hierarchical variable weights[J]. Journal of Systems Engineering, 2004, 19(3): 258–263 (in Chinese). doi: 10.3969/j.issn.1000-5781.2004.03.007 [13] 刘常昱, 李德毅, 潘莉莉, 等. 基于云模型的不确定性知识表示[J]. 计算机工程与应用, 2004, 40(2): 32–35. doi: 10.3321/j.issn:1002-8331.2004.02.011LIU C Y, LI D Y, PAN L L, et al. Uncertain knowledge representation based on cloud model[J]. Computer Engineering and Application, 2004, 40(2): 32–35 (in Chinese). doi: 10.3321/j.issn:1002-8331.2004.02.011 [14] 王洪利, 冯玉强. 基于云模型具有语言评价信息的多属性群决策研究[J]. 控制与决策, 2005, 20(6): 679–681, 685. doi: 10.3321/j.issn:1001-0920.2005.06.017WANG H L, FENG Y Q. On multiple attribute group decision making with linguistic assessment information based on cloud model[J]. Control and Decision, 2005, 20(6): 679–681, 685 (in Chinese). doi: 10.3321/j.issn:1001-0920.2005.06.017 [15] 路峰, 吴慧中. 网格环境下基于云模型的信任评估与决策方法研究[J]. 系统仿真学报, 2009, 21(2): 421–426.LU F, WU H Z. Research of trust valuation and decision-making based on cloud model in grid environment[J]. Journal of System Simulation, 2009, 21(2): 421–426 (in Chinese). [16] LIN L, GANG D. A multiple classification method based on the cloud model[J]. Neural Network World Journal, 2010, 20(5): 651–666. [17] 刘文奇. 均衡函数及其在变权综合中的应用[J]. 系统工程理论与实践, 1997, 17(4): 58–64, 74.LIU W Q. Balanced function and its application for variable weight synthesizing[J]. System Engineering Theory and Practice, 1997, 17(4): 58–64, 74 (in Chinese). -
ZG2337_en.pdf
-