留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压浪板对高速两栖平台运动稳定性影响的数值分析

杜尊峰 慕旭亮 李志军

杜尊峰, 慕旭亮, 李志军. 压浪板对高速两栖平台运动稳定性影响的数值分析[J]. 中国舰船研究, 2022, 17(3): 85–92 doi: 10.19693/j.issn.1673-3185.02331
引用本文: 杜尊峰, 慕旭亮, 李志军. 压浪板对高速两栖平台运动稳定性影响的数值分析[J]. 中国舰船研究, 2022, 17(3): 85–92 doi: 10.19693/j.issn.1673-3185.02331
DU Z F, MU X L, LI Z J. Numerical analysis of influence of stern flaps on motion and stability of high-speed amphibious platform[J]. Chinese Journal of Ship Research, 2022, 17(3): 85–92 doi: 10.19693/j.issn.1673-3185.02331
Citation: DU Z F, MU X L, LI Z J. Numerical analysis of influence of stern flaps on motion and stability of high-speed amphibious platform[J]. Chinese Journal of Ship Research, 2022, 17(3): 85–92 doi: 10.19693/j.issn.1673-3185.02331

压浪板对高速两栖平台运动稳定性影响的数值分析

doi: 10.19693/j.issn.1673-3185.02331
详细信息
    作者简介:

    杜尊峰,男,1984年生,博士,副教授。研究方向:高新船舶智能设计。E-mail:dzf@tju.edu.cn

    慕旭亮,男,1998年生,硕士生。研究方向:两栖平台水动力性能,计算流体力学。E-mail:18202614551@163.com

    李志军,男,1987年生,工程师。研究方向:两栖车设计与制造。E-mail:junzhili@163.com

    通信作者:

    杜尊峰

  • 中图分类号: U661.2+2;U674.78

Numerical analysis of influence of stern flaps on motion and stability of high-speed amphibious platform

知识共享许可协议
压浪板对高速两栖平台运动稳定性影响的数值分析杜尊峰,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  压浪板对两栖平台的水上性能具有显著影响,需探讨滑行状态下压浪板对高速两栖平台航行姿态及运动稳定性的影响规律。  方法  采用SST k-ω湍流模型以及重叠网格技术,对高速状态下两栖平台的静水直航进行CFD数值仿真计算,比较不同压浪板作用下平台姿态及稳定性的变化特性,并利用支持向量机(SVM)进行速度、重心位置等因素影响下平台运动稳定性边界的分类识别。  结果  结果显示,压浪板通过改变平台底面的压力分布,可减小航行纵倾角,并且压浪板的下旋角度越大,对姿态稳定性的影响越显著;在重心位置相同的情况下,可提高平台稳定状态下能够达到的最大航速。  结论  研究表明减摇附体的应用及运动稳定性的提高对两栖平台的高速化发展意义重大。
  • 图  1  GPPH滑行艇外形

    Figure  1.  Outline of GPPH planing craft

    图  2  网格与边界设置

    Figure  2.  Grid and boundary setting

    图  3  数值方法验证结果

    Figure  3.  Verification results of numerical method

    图  4  两栖平台外形与艉压浪板示意图

    Figure  4.  Outline of amphibiou platform and stern flap

    图  5  压浪板网格划分

    Figure  5.  Grid division of stern flap

    图  6  不同纵剖面处波形比较

    Figure  6.  Comparison of wave height at different longitudinal sections

    图  7  不同压浪板下旋角时平台底部相对压力分布

    Figure  7.  Relative pressure distribution at the bottom of platform under different α

    图  8  不同下旋角度时压浪板及平台纵剖线相对压力比较 (v = 22 kn)

    Figure  8.  Relative pressure on longitudinal section of platform and stern flap under different α (v = 22 kn)

    图  9  不同航速下的姿态收敛情况 (α=15°,r=0.40)

    Figure  9.  Attitude convergence at different speeds (α=15°, r=0.40)

    图  10  不同压浪板状态下姿态收敛情况 (v=22 kn,r = 0.43)

    Figure  10.  Attitude convergence at different stern flaps (v=22 kn, r = 0.43)

    图  11  不同下旋角压浪板作用时的稳定性分类结果

    Figure  11.  Stability classification results at different α

    图  12  不同下旋角压浪板作用时的平台稳定性边界

    Figure  12.  Boundary of platform stability at different α

    表  1  GPPH滑行艇结构参数

    Table  1.   Parameters of GPPH planing craft

    参数数值
    艇长Ll /m2.410
    艇宽Bl /m0.630
    质量ml /kg101.250
    重心距船艉距离xl /m0.844
    重心距基线高度zl /m0.138
    纵向转动惯量Iyy /(kg·m2)20.940
    静浮吃水Dl /m0.148
    下载: 导出CSV

    表  2  两栖平台参数

    Table  2.   Parameters of amphibious platform

    参数数值
    总长L/m6.00
    水线长LWL/m5.69
    型宽B/m2.36
    吃水D/m0.42
    排水量Δ/t3.20
    重心距底板高度zg /m0.30
    压浪板长度/m0.15
    压浪板宽度/m0.34
    下载: 导出CSV

    表  3  网格敏感性结果

    Table  3.   Results of grid sensitivity

    表面网格尺寸/mmα=8°α=23°
    纵倾角/(°)升沉/m纵倾角/(°)升沉/m
    144.360.3181.660.254
    204.230.3161.550.256
    283.890.3191.540.256
    下载: 导出CSV

    表  4  22 kn速度下的纵向运动结果

    Table  4.   The results of longitudinal motion at a speed of 22 kn

    α/(°)纵倾角/(°)升沉/m
    无压浪板4.610.34
    24.500.33
    84.230.31
    152.950.28
    231.550.26
    下载: 导出CSV
  • [1] 居乃鵕. 两栖车辆水动力学分析与仿真[M]. 北京: 兵器工业出版社, 2005: 386-421.

    JU N J. Hydrodynamics analysis and simulation for amphibious vehicle[M]. Beijing: The Publishing House of Ordnance Industry, 2005: 386-421 (in Chinese).
    [2] 余祖耀, 廖远才, 李锦云, 等. 滑板角度组合对两栖车辆升阻比影响的仿真研究[J]. 船舶工程, 2015, 37(3): 26–29.

    YU Z Y, LIAO Y C, LI J Y, et al. Simulation analysis of effect of different skateboard angles on lift-drag ratio of amphibious vehicle[J]. Ship Engineering, 2015, 37(3): 26–29 (in Chinese).
    [3] MAIMUN A, NAKISA M, TARMIZI A, et al. Numerical study on hydrodynamic resistance of new hull design for multipurpose amphibious vehicle[J]. Applied Mechanics and Materials, 2014, 663: 522–531. doi: 10.4028/www.scientific.net/AMM.663.522
    [4] NAKISA M, MAIMUN A, AHMED Y M, et al. Numerical estimation of shallow water effect on multipurpose amphibious vehicle resistance[J]. Journal of Naval Architecture and Marine Engineering, 2017, 14(1): 1–8. doi: 10.3329/jname.v14i1.26523
    [5] 凌宏杰, 王志东. 高速滑行艇“海豚运动”现象的实时数值预报方法[J]. 上海交通大学学报, 2014, 48(1): 106–110.

    LING H J, WANG Z D. Real-time numerical prediction method of “Dolphin Motion” high-speed planning craft[J]. Journal of Shanghai Jiaotong University, 2014, 48(1): 106–110 (in Chinese).
    [6] MANSOORI M, FERNANDES A C. The interceptor hydrodynamic analysis for controlling the porpoising instability in high speed crafts[J]. Applied Ocean Research, 2016, 57: 40–51. doi: 10.1016/j.apor.2016.02.006
    [7] SAKAKI A, GHASSEMI H, KEYVANI S. Evaluation of the hydrodynamic performance of planing boat with trim tab and interceptor and its optimization using genetic algorithm[J]. Journal of Marine Science and Application, 2019, 18(2): 131–141. doi: 10.1007/s11804-018-0040-6
    [8] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响[J]. 船舶工程, 2019, 41(7): 37–43.

    LI D Q, LI P, ZHANG Y L, et al. Influence of segmented stern flap on resistance performance of high speed craft[J]. Ship Engineering, 2019, 41(7): 37–43 (in Chinese).
    [9] 孙一方, 宗智, 姜宜辰. 船舶在波浪上纵向运动与控制研究综述[J]. 中国舰船研究, 2020, 15(1): 1–12, 47.

    SUN Y F, ZONG Z, JIANG Y C. Review of longitudinal motion and controls of ships on waves[J]. Chinese Journal of Ship Research, 2020, 15(1): 1–12, 47 (in Chinese).
    [10] LEE S J, LEE T I, LEE J J, et al. Hydrodynamic characteristics of a hydrofoil-assisted amphibious vehicle[J]. Journal of Ship Research, 2017, 61: 15–22. doi: 10.5957/jsr.2017.61.1.15
    [11] 王少新, 金国庆, 王涵, 等. 双车厢两栖车静水直航下的水动力性能研究[J]. 兵工学报, 2020, 41(3): 434–441. doi: 10.3969/j.issn.1000-1093.2020.03.003

    WANG S X, JIN G Q, WANG H, et al. Research on the hydrodynamic performance of a double-carriage amphibious vehicle sailing in still water[J]. Acta Armamentarii, 2020, 41(3): 434–441 (in Chinese). doi: 10.3969/j.issn.1000-1093.2020.03.003
    [12] 贾敬蓓, 宗智, 金国庆, 等. 航行姿态对半滑行三体船型静水阻力影响的数值研究[J]. 中国舰船研究, 2020, 15(6): 106–114.

    JIA J B, ZONG Z, JIN G Q, et al. A numerical investigation of sinkage and trim effects on the resistance of trimaran hull form in calm water[J]. Chinese Journal of Ship Research, 2020, 15(6): 106–114 (in Chinese).
    [13] JAVANMARD E, YARI E, MEHR J A, et al. Hydrodynamic characteristic curves and behavior of flow around a surface-piercing propeller using computational fluid dynamics based on FVM[J]. Ocean Engineering, 2019, 192: 106445. doi: 10.1016/j.oceaneng.2019.106445
    [14] VASHAHI F, DAFSARI R A, REZAEI S, et al. Assessment of steady VOF RANS turbulence models in rendering the internal flow structure of pressure swirl nozzles[J]. Fluid Dynamics Research, 2019, 51(4): 045506. doi: 10.1088/1873-7005/ab2546
    [15] LEE E, WEIL C R, FULLERTON A. Experimental results for the calm water resistance of the generic prismatic planing hull (GPPH) : NSWCCD-80-TR-2017/015[R]. Naval Surface Warfare Center Carderock Division, 2017.
    [16] LI J H, BONFIGLIO L, BRIZZOLARA S. Verification and validation study of openfoam on the generic prismatic planing hull form[C]//MARINE VIII: Proceedings of the VIII International Conference on Computational Methods in Marine Engineering. CIMNE, 2019: 428-440.
    [17] WEI H X, CHEN J F, ZHU J, et al. A new zoning method of blasting vibration based on energy proportion and its SVM classification models[J]. Shock and Vibration, 2021, 2021: 6697682.
  • ZG2331_en.pdf
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  376
  • HTML全文浏览量:  84
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-25
  • 修回日期:  2021-05-31
  • 网络出版日期:  2022-06-16
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回