Numerical investigation on unsteady force suppression of pump-jet rotor by oscillating stator trailing edge flaps
-
摘要:
目的 转子非定常力是泵喷推进器轴系振动的主要激励源,其产生机理和抑制机理受转−定子干扰流动的影响,需研究其抑制方法。 方法 在泵喷推进器定子后缘引入襟翼结构,利用襟翼作动产生二次流动,改变转子入流条件,调控转−定子干扰流动,达到抑制转子非定常力的目的。以具有前置定子襟翼的Suboff全附体艇后泵喷推进器为研究对象,采用基于SST k-ω湍流模型的URANS方法和动网格技术建立可实现定子襟翼作动的数值模型。针对转子非定常力转子叶频分量的抑制,给出定子襟翼作动规律的表达式。 结果 结果显示,在襟翼作动最优控制下,泵喷的水动力性能变化不超过1%,转子轴向非定常力在转子叶频处下降了83.35%,单个转子叶片轴向非定常力在转子叶频处降低了81.80%;襟翼作动对定子尾迹与转子入流速度的调控是抑制转子非定常力的机理。 结论 研究表明,最优控制下的定子襟翼作动能够在保持水动力性能的同时使转子非定常力特征线谱得到显著抑制,可为泵喷推进器的叶频等线谱控制提供一种新的思路。 Abstract:Objectives The unsteady force of the rotor is the main excitation source of pump-jet shafting vibration, and rotor-stator interaction has an important impact on the characteristics of the unsteady force. Therefore, the suppression method of pump-jet unsteady force should be studied. Methods Oscillating flaps are introduced onto the trailing edge of the stator. The secondary flow generated by the flaps is used to affect the rotor inflow conditions so as to suppress the unsteady force of the rotor. A numerical model is established on the basis of the unsteady Reynolds-averaged Navier-Stokes equation (URANS) method of the shear stress transport (SST k-ω) turbulence model, and a SUBOFF with full appendages and a pump-jet with stator trailing edge flaps is taken as the research object. Aiming at suppressing the unsteady force amplitude at the rotor blade passing frequency, the oscillating law of the stator flaps is given. Results The results show that under the optimal control of the flaps, the hydrodynamic performance of the pump-jet varies by less than 1%, the axial unsteady force of the rotor decreases by 83.35% at the rotor blade pass frequency (BPF) and that of a single rotor blade decreases by 81.8% at the rotor BPF. Further analysis shows that the oscillating flaps can manipulate the stator wake and velocity on the rotor inlet plane. Conclusions The results show that stator trailing edge flaps can significantly suppress the characteristic line spectrum of rotor unsteady force while maintaining hydrodynamic performance, which will shed some light on controlling the BPF line spectra of pump-jets. -
表 1 泵喷推进器各部件参数
Table 1. Parameters of different parts for the pump-jet propulsor
参数 数值 导管翼型 NACA 4412 导管弦长Lduct /mm 190 导管入口端直径Dduct,in /mm 260 导管出口端直径Dduct,out /mm 232 转子叶片翼型 NACA 66 mod & NACA a = 0.8 转子叶片数Zrotor 5 转子直径Drotor /mm 240 转子毂径比Dhub /Drotor 0.273 定子导叶翼型 NACA 66 mod & NACA a = 0.8 定子叶片数Zstator 7 定子预旋角Astator /(°) 7.5 定子弦长Lstator /mm 50 表 2 不同网格下Suboff艇(无推进器)的阻力计算结果
Table 2. Calculation results of resistance of Suboff (without propulsor) under different grids
来流速度/(m∙s−1) 试验值/N Grid-Suboff-1 (483×104) Grid-Suboff-2 (1 267×104) Grid-Suboff-3 (2 632×104) 计算值/N 误差/% 计算值/N 误差/% 计算值/N 误差/% 3.05 102.30 101.5 0.77 102.1 0.20 102.2 0.09 5.14 283.80 271.3 4.40 277.8 2.11 278.6 1.83 6.10 389.20 373.2 4.11 378.5 2.75 380.4 2.26 7.16 526.60 505.6 3.99 515.1 2.18 518.6 1.52 8.23 675.60 653.1 3.33 665.9 1.43 668.2 1.10 表 3 不同网格下泵喷推进器水动力性能计算结果
Table 3. Calculation results of hydrodynamics performance of pump-jet propulsor for different grids
计算模型 网格数 定常计算SST k-ω,
N = 780 r/min,uinlet = 3.05 m/s推力/N 相对误差/% 扭矩/(N∙m) 相对误差/% Grid-PJ-1 721×104 635.17 0.69 39.181 1.11 Grid-PJ-2 1 137×104 637.12 0.39 39.419 0.51 Grid-PJ-3 1 708×104 639.11 0.08 39.579 0.11 Grid-PJ-4 2 132×104 639.59 0 39.621 0 表 4 各计算域网格数
Table 4. Number of grids in computational domains
计算域 网格数 背景计算域 881.1×104 导管域 163.9×104 定子域 236.4×104 转子域 593.7×104 襟翼域 143.1×104 全域 2 018.1×104 表 5 不同工作状态下的水动力计算结果
Table 5. Hydrodynamics calculation results under different working conditions
推力系数KT 推力系数变化率ΔKT/% 扭矩系数10KQ 扭矩系数变化率ΔKQ/% 效率η 效率变化率Δη/% 基准模型 0.365 1 0 0.902 0 0 0.6445 0 襟翼静止 0.367 3 0.602 6 0.904 6 0.288 2 0.646 3 0.279 3 襟翼作动(最优控制) 0.366 8 0.907 2 0.907 2 0.576 5 0.643 6 −0.139 6 -
[1] 师帅康, 黄修长, 饶志强, 等. 湍流入流下泵喷推进器力谱特性研究[J]. 中国舰船研究, 2022, 17(1): 1–10. doi: 10.19693/j.issn.1673-3185.02249SHI S K, HUANG X C, RAO Z Q, et al. Study on force spectrum characteristics of a pump-jet under inflow turbulence[J]. Chinese Journal of Ship Research, 2022, 17(1): 1–10. doi: 10.19693/j.issn.1673-3185.02249 [2] 华宏星, 俞强. 船舶艉部激励耦合振动噪声机理研究进展与展望[J]. 中国舰船研究, 2017, 12(4): 6–16. doi: 10.3969/j.issn.1673-3185.2017.04.002HUA H X, YU Q. Structural and acoustic response due to excitation from ship stern: overview and suggestions for future research[J]. Chinese Journal of Ship Research, 2017, 12(4): 6–16 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.04.002 [3] 黄修长, 苏智伟, 师帅康, 等. 泵喷分布式脉动压力激励下泵喷艇体耦合系统振动声辐射[J]. 振动与冲击, 2021, 40(18): 1–9.HUANG X C, SU Z W, SHI S K, et al. Vibro-acoustic responses of a coupled pump-jet Suboff system under distributed unsteady hydrodynamics by a pump-jet[J]. Journal of Vibration and Shock, 2021, 40(18): 1–9 (in Chinese). [4] 何友声, 王国强. 螺旋桨激振力[M]. 上海: 上海交通大学出版社, 1987: 3−10, 142−145.HE Y S, WANG G Q. Excitation force of the propeller[M]. Shanghai: Shanghai Jiao Tong University Press, 1987: 3−10, 142−145 (in Chinese). [5] QIN D H, PAN G, LEE S, et al. Underwater radiated noise reduction technology using sawtooth duct for pumpjet propulsor[J]. Ocean Engineering, 2019, 188: 106228. doi: 10.1016/j.oceaneng.2019.106228 [6] HUANG Q G, LI H, PAN G, et al. Effects of duct parameter on pump-jet propulsor unsteady hydrodynamic performance[J]. Ocean Engineering, 2021, 221: 108509. doi: 10.1016/j.oceaneng.2020.108509 [7] AHN S J, KWON O J. Numerical investigation of a pump-jet with ring rotor using an unstructured mesh technique[J]. Journal of Mechanical Science and Technology, 2015, 29(7): 2897–2904. doi: 10.1007/s12206-015-0619-7 [8] 韩蕊林, 余海廷, 华宏星, 等. 泵喷推进器间隙流动控制技术试验研究[J]. 中国舰船研究, 2023, 18(1): 411–151.HAN R L, YU H T, HUA H X, et al. Experimental study of controlling tip clearance flow in a pump-jet propulsor[J]. Chinese Journal of Ship Research, 2023, 18(1): 411–151 (in Chinese). [9] LI F Z, LIU G S, HUANG Q G, et al. Influence of asymmetric pre-whirl stator spacing on unsteady characteristics of pump-jet propulsor[J]. Ocean Engineering, 2023, 273: 113896. doi: 10.1016/j.oceaneng.2023.113896 [10] ZHANG Y, HAN J T, HUANG B, et al. Suppression method for exciting force of pump jet propellers based on sinusoidal unevenly spaced rotor blades[J]. Ocean Engineering, 2022, 262: 112198. doi: 10.1016/j.oceaneng.2022.112198 [11] EBRAHIMI A, RAZAGHIAN A H, SEIF M S, et al. A comprehensive study on noise reduction methods of marine propellers and design procedures[J]. Applied Acoustics, 2019, 150: 55–69. doi: 10.1016/j.apacoust.2018.12.004 [12] BANDYOPADHYAY JR K P R, THIVIERGE D P, NEDDERMAN W H, et al. A biomimetic propulsor for active noise control. Part 1: experiments[C]//APS 53rd Annual Meeting of the Division of Fluid Dynamics. Washington, 2000: FH. 007. [13] ANNASWAMY JR K A, BANDYOPADHYAY P R. A biomimetic propulsor for active noise control. Part 2: Theory[C]//APS Division of Fluid Dynamics Meeting Abstracts. 2000: FH. 008. [14] OPILA D F. Active control of underwater propulsor noise using polypyrrole conducting polymer actuators[D]. Massachusetts, USA: Massachusetts Institute of Technology, 2003. [15] JAMES R A. Reduction of unsteady underwater propeller forces via active tail articulation[D]. Massachusetts, USA: Massachusetts Institute of Technology, 2006. [16] 李福正, 黄桥高, 潘光, 等. 定子叶片数对泵喷推进器空化性能的影响[J]. 装备环境工程, 2022, 19(5): 56–64.LI F Z, HUANG Q G, PAN G, et al. Effect of stator blade number on cavitation performance of pump-jet propulsor[J]. Equipment Environmental Engineering, 2022, 19(5): 56–64 (in Chinese). [17] 孙瑜, 苏玉民. 导管长度对泵喷推进器水动力性能的影响研究[C]//第三十届全国水动力学研讨会暨第十五届全国水动力学学术会议论文集(下册), 2019.SUN Y, SU Y M. Research about influence of duct length on hydrodynamic performance of pump-jet propulsion[C]//Proceedings of the 30th National Conference on Hydrodynamics & 15th National Congress on Hydrodynamics (II), 2019 (in Chinese). [18] 鹿麟, 李强, 高跃飞. 不同叶顶间隙对泵喷推进器性能的影响[J]. 华中科技大学学报(自然科学版), 2017, 45(8): 110–114.LU L, LI Q, GAO Y F. Numerical investigation of effect of different tip clearance size on the pumpjet propulsor performance[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2017, 45(8): 110–114 (in Chinese). [19] GROVES N C, HUANG T T, CHANG M S. Geometric characteristics of DARPA (defense advanced research projects agency) SUBOFF models (DTRC model numbers 5470 and 5471)[R]. Bethesda: David Taylor Research Center, 1989. [20] CHASE N, CARRICA P M. Submarine propeller computations and application to self-propulsion of DARPA Suboff[J]. Ocean Engineering, 2013, 60: 68–80. doi: 10.1016/j.oceaneng.2012.12.029 [21] WANG L, MARTIN J E, CARRICA P M, et al. Experiments and CFD for DARPA Suboff appended with propeller E1658 operating near the surface[C]//Proceedings of the 6th International Symposium on Marine Propulsors. Rome: National Research Council of Italy, Institute of Marine Engineering, 2019: 1-9. [22] SHI S K, HUANG X C, RAO Z Q, et al. Numerical analysis on flow noise and structure-borne noise of fully appended SUBOFF propelled by a pump-jet[J]. Engineering Analysis with Boundary Elements, 2022, 138: 140–158. doi: 10.1016/j.enganabound.2022.02.012 [23] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149 [24] MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics, 2009, 23(4): 305–316. doi: 10.1080/10618560902773387 [25] CROOK B. Resistance for DARPA SUBOFF as represented by model 5470[J]. Bethesda: David Taylor Research Center, 1990. [26] SHI S K, TANG W H, HUANG X C, et al. Experimental and numerical investigations on the flow-induced vibration and acoustic radiation of a pump-jet propulsor model in a water tunnel[J]. Ocean Engineering, 2022, 258: 111736. doi: 10.1016/j.oceaneng.2022.111736 [27] 李晗, 黄桥高, 潘光, 等. 泵喷推进器水动力及流场特性研究综述[J]. 力学学报, 2022, 54(4): 829–843.LI H, HUANG Q G, PAN G, et al. Review of hydrodynamics and flow field characteristics of pump-jet propulsors[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 829–843 (in Chinese). -