留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升力分配系数对螺旋桨正倒车水动力性能影响的数值分析

贺伟 郭家伟 胡小菲 刘明静 柏铁朝 李子如

贺伟, 郭家伟, 胡小菲, 等. 升力分配系数对螺旋桨正倒车水动力性能影响的数值分析[J]. 中国舰船研究, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288
引用本文: 贺伟, 郭家伟, 胡小菲, 等. 升力分配系数对螺旋桨正倒车水动力性能影响的数值分析[J]. 中国舰船研究, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288
HE W, GUO J W, HU X F, et al. Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis[J]. Chinese Journal of Ship Research, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288
Citation: HE W, GUO J W, HU X F, et al. Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis[J]. Chinese Journal of Ship Research, 2022, 17(1): 42–50 doi: 10.19693/j.issn.1673-3185.02288

升力分配系数对螺旋桨正倒车水动力性能影响的数值分析

doi: 10.19693/j.issn.1673-3185.02288
基金项目: 国家自然科学基金资助项目(51609189);中央高校基本科研业务费专项资金资助项目(2019III076GX)
详细信息
    作者简介:

    贺伟,男,1982年生,博士,副教授。研究方向:船舶推进器水动力学。E-mail:hwcudca@163.com

    郭家伟,男,1997年生,硕士生。研究方向:船舶推进技术。E-mail:253418533 @qq.com

    李子如,女,1983年生,博士,副教授。研究方向:船舶水动力学。E-mail:lisay333@163.com

    通信作者:

    李子如

  • 中图分类号: U661.31

Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis

知识共享许可协议
升力分配系数对螺旋桨正倒车水动力性能影响的数值分析贺伟,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  基于数值模拟方法研究螺旋桨几何参数对其正倒车水动力性能的影响规律。  方法  以某33 000 DWT成品油轮为应用对象,采用RANS方法并结合Realiazable k-ε湍流模型,对与其相匹配的1个图谱桨与3个理论桨在正车前进和倒车后退工况下的水动力性能进行数值仿真,讨论升力分配系数、螺距与拱度组合方式对螺旋桨正倒车水动力性能的影响规律。  结果  结果表明:在正车前进和倒车后退工况下,桨叶剖面螺距对剖面升力的贡献始终为正,拱度的贡献则体现为正负交替,螺旋桨设计时适当增加拱度减小螺距有利于提升其正车前进工况下的敞水效率,反之,采用大螺距小拱度则有利于增大倒车推力。  结论  基于研究结果给出了螺旋桨设计中兼顾考虑其正车和倒车性能的若干建议。
  • 图  1  33 000 DWT成品油轮实船照片

    Figure  1.  View of 33 000 DWT oil product tanker

    图  2  2个螺旋桨的几何示意图

    Figure  2.  Geometry of two propellers

    图  3  2个螺旋桨螺距比和拱度弦长比径向分布

    Figure  3.  Radial distribution of pitch ratio and camber-chord length ratio of two propellers

    图  4  计算域

    Figure  4.  Computational domain

    图  5  计算域特征截面网格示意图

    Figure  5.  Grids of feature section in computational domain

    图  6  理论桨1正车前进工况下敞水性能数值计算与试验结果比较

    Figure  6.  Comparison of open water performance between numerical and experimental results of theoretical propeller-1

    图  7  两桨正车前进工况敞水性能计算结果比较

    Figure  7.  Comparison of open water performance between numerical results of two propellers in forward operation mode

    图  8  正车前进工况J=0.430 8下两桨桨叶的压力分布

    Figure  8.  Pressure distribution on the blades of two propellers in forward operation mode at J=0.430 8

    图  9  倒车后退工况下两桨敞水性能计算结果比较

    Figure  9.  Comparison of open water performance between numerical results of two propeller in astern operation mode

    图  10  倒车后退工况J=0.1下两桨桨叶压力分布云图

    Figure  10.  Pressure distribution on the blades of two propellers in astern operation mode at J=0.1

    图  11  3个理论桨剖面升力分配系数径向分布曲线

    Figure  11.  Lift distribution coefficient radially shared by the blade sections of three theoretical propellers

    图  12  3个理论桨螺距比径向分布曲线

    Figure  12.  Radial distribution of pitch ratio of three theoretical propellers

    图  13  3个理论桨拱度弦长比径向分布曲线

    Figure  13.  Radial distribution of camber-chord length ratio of three theoretical propellers

    图  14  正车前进工况J=0.430 8下3个理论桨的桨叶压力分布

    Figure  14.  Pressure distribution on the blades of three theoretical propellers in forward operation mode at J=0.430 8

    图  15  倒车后退工况下3个理论桨的推力系数曲线

    Figure  15.  Thrust coefficient of three theoretical propellers in astern operation mode

    图  16  倒车后退工况下3个理论桨的转矩系数曲线

    Figure  16.  Torque coefficient of three theoretical propellers in astern operation mode

    图  17  倒车后退工况J=0.1下3个理论桨的桨叶压力分布

    Figure  17.  Pressure distribution of blades of three theoretical propellers in astern operation mode at J=0.1

    图  18  3个理论桨0.7R处剖面速度三角形示意图

    Figure  18.  Diagram of velocity triangle of three theoretical propellers at 0.7R

    表  1  船舶及螺旋桨设计相关参数

    Table  1.   Design parameters of ship and propeller

    参数数值
    船舶总长/m175.0
    方形系数0.813
    设计航速/ kn13.0
    主机功率/ kW6 340
    功率储备系数0.15
    轴系效率0.97
    伴流分数0.270
    推力减额分数0.155
    相对旋转效率0.985
    螺旋桨转速/(r·min−1136
    下载: 导出CSV

    表  2  图谱桨和理论桨1主要几何参数

    Table  2.   Main geometric parameters of MAU-series propeller and theoretical propeller 1

    参数数值
    图谱桨理论桨1
    螺旋桨直径/m55
    叶数55
    盘面比0.550.55
    毂径比0.180.18
    0.7R处螺距比0.700 00.748 6
    侧斜角/(°)1024.5
    剖面类型MAUNACA66
    下载: 导出CSV

    表  3  计算域边界条件与螺旋桨旋向的定义

    Table  3.   Definition of rotational direction of propeller and boundary conditions of computational domain

    项 目正车前进倒车后退
    来流方向XX
    螺旋桨旋转方向XX
    计算域左侧边界条件速度入口压力出口
    计算域右侧边界条件压力出口速度入口
    远场边界条件对称平面对称平面
    桨毂和桨叶边界条件无滑移壁面无滑移壁面
    下载: 导出CSV

    表  4  3个理论桨在设计工况下的水动力性能

    Table  4.   Hydrodynamic performance of three theoretical propellers under design condition

     JKT10KQη0
    理论桨10.430 80.170 70.226 60.516 4
    理论桨20.430 80.171 90.236 70.497 9
    理论桨30.430 80.169 50.247 10.470 3
    下载: 导出CSV

    表  5  正车前进设计工况下3个理论桨的叶背及叶面推力贡献

    Table  5.   Thrust contribution of back & face of blades of three theoretical propellers under design condition

    推力贡献比例/%
    叶面压力面叶背吸力面
    理论桨18.5891.42
    理论桨26.7993.21
    理论桨32.7197.79
    下载: 导出CSV
  • [1] HECKER R, REMMERS K. Four quadrant open-water performance of propellers 3710, 4024, 4086, 4381, 4382, 4383, 4384 and 4426[R]. Bethesda, USA: David Taylor Naval Ship Research and Development Center, 1971: 411-417.
    [2] JIANG C W, HUANG T T. Propeller hydrodynamic loads and blade stresses and deflections during backing and crashback operations[C]//Propellers/Shafting'91 Symposium. Virginia Beach, VA, USA: TRID, 1991.
    [3] 王国亮. 冰—桨—流相互作用下的螺旋桨水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    WANG G L. Study of propeller hydrodynamic performance under ice-propeller-flow interaction[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [4] 赖华威. 考虑水下机器人对流场影响的螺旋桨水动力性能研究[D]. 广州: 华南理工大学, 2009.

    LAI H W. Hydrodynamic performance of propeller considering the influence of underwater robot on flow field[D]. Guangzhou: South China University of Technology, 2009 (in Chinese).
    [5] CHEN B, STERN F. Computational fluid dynamics of four-quadrant marine-propulsor flow[J]. Journal of Ship Research, 1999, 43(4): 218–228. doi: 10.5957/jsr.1999.43.4.218
    [6] CHEN H C, LEE S K. Time-domain simulation of four-quadrant propeller flows by a chimera moving grid approach[C]//Proceedings of the Civil Engineering in the Oceans VI. Baltimore, Maryland, USA: American Society of Civil Engineers, 2004.
    [7] LEE S K. CFD simulation for propeller four-quadrant flows[C]//2006 SNAME Propeller/Shafting 2006 conference. VA, USA: ABS Technical Papers, The Society of Naval Architects and Marine Engineers (SNAME), 2006.
    [8] 肖冰, 范中洲, 石爱国, 等. 螺旋桨多种工况敞水性能数值预报[J]. 大连海事大学学报., 2010, 36(3): 7–10,16.

    XIAO B, FAN Z Z, SHI A G, et al. Numerical prediction of hydrodynamic performance of open-water propeller under multi-working conditions[J]. Journal of Dalian Maritime University, 2010, 36(3): 7–10,16 (in Chinese).
    [9] 李理, 刘可, 李超, 等. 螺旋桨四象限水动力性能数值模拟及应用[J]. 舰船科学技术, 2012, 34(7): 8–14,39. doi: 10.3404/j.issn.1672-7649.2012.07.002

    LI L, LIU K, LI C, et al. The research on numerical simulation of propeller's hydrodynamic performance in four quadrants[J]. Ship Science and Technology, 2012, 34(7): 8–14,39 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.07.002
    [10] 王贵彪, 谢永和, 许颂捷. 导管螺旋桨四象限水动力性能研究[J]. 船舶工程, 2015, 37(10): 26–28,53.

    WANG G B, XIE Y H, XU S J. Research on ducted propeller's hydrodynamic performance in four quadrants[J]. Ship Engineering, 2015, 37(10): 26–28,53 (in Chinese).
    [11] 王国栋. 螺旋桨水动力、空泡和噪声性能预报方法研究[D]. 武汉: 华中科技大学, 2013.

    WANG G D. Investigation on the numerical simulation of propeller hydrodynamics, cavitation and noise[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese).
    [12] 杨琼方, 王永生, 张志宏. 侧斜与负载对螺旋桨无空化和空化水动力性能的影响[J]. 计算力学学报, 2012, 29(5): 765–771. doi: 10.7511/jslx20125021

    YANG Q F, WANG Y S, ZHANG Z H. Effects of skew and load on propeller non-cavitation and cavitation hydrodynamic performances[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 765–771 (in Chinese). doi: 10.7511/jslx20125021
    [13] 谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.

    TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003(in Chinese).
    [14] 陈进, 邹早建. 紧急制动及紧急向前时螺旋桨绕流的大涡模拟[J]. 船舶力学, 2018, 22(3): 296–310. doi: 10.3969/j.issn.1007-7294.2018.03.005

    CHEN J, ZOU Z J. LES simulations of the flow around a propeller in crash back and crash ahead[J]. Journal of Ship Mechanics, 2018, 22(3): 296–310 (in Chinese). doi: 10.3969/j.issn.1007-7294.2018.03.005
    [15] 何朋朋. 船用复合材料螺旋桨流固声耦合特性数值研究[D]. 武汉: 武汉理工大学, 2019.

    HE P P. Numerical research of fluid-structure-acoustics coupling characteristics of marine composite propellers [D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese).
  • ZG2288_en.pdf
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  143
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 修回日期:  2021-04-07
  • 网络出版日期:  2022-01-29
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回