Influence of lift distribution coefficient on hydrodynamic performance of propeller in forward and astern mode of operation by numerical analysis
-
摘要:
目的 基于数值模拟方法研究螺旋桨几何参数对其正倒车水动力性能的影响规律。 方法 以某33 000 DWT成品油轮为应用对象,采用RANS方法并结合Realiazable k-ε湍流模型,对与其相匹配的1个图谱桨与3个理论桨在正车前进和倒车后退工况下的水动力性能进行数值仿真,讨论升力分配系数、螺距与拱度组合方式对螺旋桨正倒车水动力性能的影响规律。 结果 结果表明:在正车前进和倒车后退工况下,桨叶剖面螺距对剖面升力的贡献始终为正,拱度的贡献则体现为正负交替,螺旋桨设计时适当增加拱度减小螺距有利于提升其正车前进工况下的敞水效率,反之,采用大螺距小拱度则有利于增大倒车推力。 结论 基于研究结果给出了螺旋桨设计中兼顾考虑其正车和倒车性能的若干建议。 Abstract:Objectives The influence of the geometrical parameters of propeller on its hydrodynamic performance in forward and astern mode of operation is studied by numerical simulation. Methods Taking a 33 000 DWT oil product tanker as the application object, the hydrodynamic performance of a MAU-series propeller and three theoretical propellers operated in forward and astern mode is simulated using the RANS method combined with the Realizable k-ε turbulence model. The influence of the lift distribution coefficient, pitch and camber combination on the hydrodynamic performance of propeller in both operation modes are then discussed through comparison. Results The results show that in forward and astern operation mode, the pitch of the blade will generate positive lift, whereas the camber of the blade will generate positive and negative lift alternately. Properly increasing the camber and reducing the pitch of the propeller in design is beneficial for improving its open water efficiency in forward operation mode. On the contrary, adopting the combination of a large pitch and a small camber is beneficial for increasing reverse thrust. Conclusion Based on the experimental data, suggestions on performace trade-offs of designing a propeller in both operation modes are given. -
Key words:
- marine propeller performance /
- astern operation /
- forward operation /
- hydrodynamic performance /
- RANS
-
表 1 船舶及螺旋桨设计相关参数
Table 1. Design parameters of ship and propeller
参数 数值 船舶总长/m 175.0 方形系数 0.813 设计航速/ kn 13.0 主机功率/ kW 6 340 功率储备系数 0.15 轴系效率 0.97 伴流分数 0.270 推力减额分数 0.155 相对旋转效率 0.985 螺旋桨转速/(r·min−1) 136 表 2 图谱桨和理论桨1主要几何参数
Table 2. Main geometric parameters of MAU-series propeller and theoretical propeller 1
参数 数值 图谱桨 理论桨1 螺旋桨直径/m 5 5 叶数 5 5 盘面比 0.55 0.55 毂径比 0.18 0.18 0.7R处螺距比 0.700 0 0.748 6 侧斜角/(°) 10 24.5 剖面类型 MAU NACA66 表 3 计算域边界条件与螺旋桨旋向的定义
Table 3. Definition of rotational direction of propeller and boundary conditions of computational domain
项 目 正车前进 倒车后退 来流方向 X −X 螺旋桨旋转方向 −X X 计算域左侧边界条件 速度入口 压力出口 计算域右侧边界条件 压力出口 速度入口 远场边界条件 对称平面 对称平面 桨毂和桨叶边界条件 无滑移壁面 无滑移壁面 表 4 3个理论桨在设计工况下的水动力性能
Table 4. Hydrodynamic performance of three theoretical propellers under design condition
J KT 10KQ η0 理论桨1 0.430 8 0.170 7 0.226 6 0.516 4 理论桨2 0.430 8 0.171 9 0.236 7 0.497 9 理论桨3 0.430 8 0.169 5 0.247 1 0.470 3 表 5 正车前进设计工况下3个理论桨的叶背及叶面推力贡献
Table 5. Thrust contribution of back & face of blades of three theoretical propellers under design condition
推力贡献比例/% 叶面压力面 叶背吸力面 理论桨1 8.58 91.42 理论桨2 6.79 93.21 理论桨3 2.71 97.79 -
[1] HECKER R, REMMERS K. Four quadrant open-water performance of propellers 3710, 4024, 4086, 4381, 4382, 4383, 4384 and 4426[R]. Bethesda, USA: David Taylor Naval Ship Research and Development Center, 1971: 411-417. [2] JIANG C W, HUANG T T. Propeller hydrodynamic loads and blade stresses and deflections during backing and crashback operations[C]//Propellers/Shafting'91 Symposium. Virginia Beach, VA, USA: TRID, 1991. [3] 王国亮. 冰—桨—流相互作用下的螺旋桨水动力性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.WANG G L. Study of propeller hydrodynamic performance under ice-propeller-flow interaction[D]. Harbin: Harbin Engineering University, 2016 (in Chinese). [4] 赖华威. 考虑水下机器人对流场影响的螺旋桨水动力性能研究[D]. 广州: 华南理工大学, 2009.LAI H W. Hydrodynamic performance of propeller considering the influence of underwater robot on flow field[D]. Guangzhou: South China University of Technology, 2009 (in Chinese). [5] CHEN B, STERN F. Computational fluid dynamics of four-quadrant marine-propulsor flow[J]. Journal of Ship Research, 1999, 43(4): 218–228. doi: 10.5957/jsr.1999.43.4.218 [6] CHEN H C, LEE S K. Time-domain simulation of four-quadrant propeller flows by a chimera moving grid approach[C]//Proceedings of the Civil Engineering in the Oceans VI. Baltimore, Maryland, USA: American Society of Civil Engineers, 2004. [7] LEE S K. CFD simulation for propeller four-quadrant flows[C]//2006 SNAME Propeller/Shafting 2006 conference. VA, USA: ABS Technical Papers, The Society of Naval Architects and Marine Engineers (SNAME), 2006. [8] 肖冰, 范中洲, 石爱国, 等. 螺旋桨多种工况敞水性能数值预报[J]. 大连海事大学学报., 2010, 36(3): 7–10,16.XIAO B, FAN Z Z, SHI A G, et al. Numerical prediction of hydrodynamic performance of open-water propeller under multi-working conditions[J]. Journal of Dalian Maritime University, 2010, 36(3): 7–10,16 (in Chinese). [9] 李理, 刘可, 李超, 等. 螺旋桨四象限水动力性能数值模拟及应用[J]. 舰船科学技术, 2012, 34(7): 8–14,39. doi: 10.3404/j.issn.1672-7649.2012.07.002LI L, LIU K, LI C, et al. The research on numerical simulation of propeller's hydrodynamic performance in four quadrants[J]. Ship Science and Technology, 2012, 34(7): 8–14,39 (in Chinese). doi: 10.3404/j.issn.1672-7649.2012.07.002 [10] 王贵彪, 谢永和, 许颂捷. 导管螺旋桨四象限水动力性能研究[J]. 船舶工程, 2015, 37(10): 26–28,53.WANG G B, XIE Y H, XU S J. Research on ducted propeller's hydrodynamic performance in four quadrants[J]. Ship Engineering, 2015, 37(10): 26–28,53 (in Chinese). [11] 王国栋. 螺旋桨水动力、空泡和噪声性能预报方法研究[D]. 武汉: 华中科技大学, 2013.WANG G D. Investigation on the numerical simulation of propeller hydrodynamics, cavitation and noise[D]. Wuhan: Huazhong University of Science and Technology, 2013 (in Chinese). [12] 杨琼方, 王永生, 张志宏. 侧斜与负载对螺旋桨无空化和空化水动力性能的影响[J]. 计算力学学报, 2012, 29(5): 765–771. doi: 10.7511/jslx20125021YANG Q F, WANG Y S, ZHANG Z H. Effects of skew and load on propeller non-cavitation and cavitation hydrodynamic performances[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 765–771 (in Chinese). doi: 10.7511/jslx20125021 [13] 谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003(in Chinese). [14] 陈进, 邹早建. 紧急制动及紧急向前时螺旋桨绕流的大涡模拟[J]. 船舶力学, 2018, 22(3): 296–310. doi: 10.3969/j.issn.1007-7294.2018.03.005CHEN J, ZOU Z J. LES simulations of the flow around a propeller in crash back and crash ahead[J]. Journal of Ship Mechanics, 2018, 22(3): 296–310 (in Chinese). doi: 10.3969/j.issn.1007-7294.2018.03.005 [15] 何朋朋. 船用复合材料螺旋桨流固声耦合特性数值研究[D]. 武汉: 武汉理工大学, 2019.HE P P. Numerical research of fluid-structure-acoustics coupling characteristics of marine composite propellers [D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese). -
ZG2288_en.pdf
-