留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极地船舶吊舱推进器的功率匹配研究

黄焱 郑安宾 刘爱兵 蒋瀚锋 田育丰

黄焱, 郑安宾, 刘爱兵, 等. 极地船舶吊舱推进器的功率匹配研究[J]. 中国舰船研究, 2021, 16(X): 1–12 doi: 10.19693/j.issn.1673-3185.02281
引用本文: 黄焱, 郑安宾, 刘爱兵, 等. 极地船舶吊舱推进器的功率匹配研究[J]. 中国舰船研究, 2021, 16(X): 1–12 doi: 10.19693/j.issn.1673-3185.02281
HUANG Y, ZHENG A B, LIU A B, et al. Research on the power matching of podded propulsion for polar ship[J]. Chinese Journal of Ship Research, 2021, 16(X): 1–12 doi: 10.19693/j.issn.1673-3185.02281
Citation: HUANG Y, ZHENG A B, LIU A B, et al. Research on the power matching of podded propulsion for polar ship[J]. Chinese Journal of Ship Research, 2021, 16(X): 1–12 doi: 10.19693/j.issn.1673-3185.02281

极地船舶吊舱推进器的功率匹配研究

doi: 10.19693/j.issn.1673-3185.02281
基金项目: 国家重点研发计划项目(2018YFC1406000);工信部高技术船舶科研计划资助项目(2017-614, MC-201918-C10)
详细信息
    作者简介:

    黄焱,男,1978年生,博士,教授。研究方向:海洋环境条件与结构相互作用。E-mail:hjacyky@tju.edu.cn

    蒋瀚锋,男,1998年生,硕士生。研究方向:海洋环境条件与结构相互作用。E-mail:jiang_hanfeng@tju.edu.cn

    田育丰,男,1986年生,博士,工程师。研究方向:海洋环境条件与结构相互作用。E-mail:tianyufeng@tju.edu.cn

    通信作者:

    田育丰

  • 中图分类号: U674.21

Research on the power matching of podded propulsion for polar ship

  • 摘要:   目的  为了提高吊舱推进极地船舶设计的针对性和适用性,需开展功率匹配研究。  方法  根据国外各类冰级划分规则和实船调研结果,明确不同冰级船舶在北极的四季可航范围。基于Lindqvist公式计算3艘极区典型吊舱推进船舶的冰阻力,从而估算吊舱推进船舶的需要功率。通过调研市场上较成熟的吊舱推进器产品,建立一种极地船舶吊舱推进器的初步选型方法。  结果  结合目前主流吊舱推进器的单机功率和布置型式,得出了各类船型在不同冰级下的功率匹配结果和初步选型建议。  结论  研究成果可为设计阶段的吊舱推进器选型工作提供参考。
  • 图  1  PC 2~PC 5冰级船舶的可航范围

    Figure  1.  Seaworthiness ranges of PC 2~PC 5 ice-class ships

    图  2  东北航道与西北航道[18]

    Figure  2.  Northeast passage and northwest passage

    图  3  吊舱推进器的选型设计方法

    Figure  3.  Method of pod propulsion selection design

    图  4  半经验方法与实船数据对比[22]

    Figure  4.  Comparison between semi-empirical methods and real ship data

    图  5  吊舱推进器布置主流型式[24]

    Figure  5.  Mainstream arrangements of podded propulsion

    表  1  国际船级社协会的极地船级规范要求

    Table  1.   IACS requirements for polar class ships

    冰级符号冰级描述典型冰厚/m估计冰强度/kPa
    PC 1可在全年的任意极地海域中作业950
    PC 2可在全年的中等厚度多年冰条件下作业>3.0950
    PC 3可在全年的2年冰条件下作业,可掺杂多年冰>2.0725
    PC 4可在全年的厚当年冰条件下作业,可掺杂旧冰>1.2500
    PC 5可在全年的中等厚度当年冰条件下作业,可掺杂旧冰0.7~1.2500
    PC 6夏季/秋季可在中等厚度当年冰条件下作业,可掺杂旧冰0.7~1.2
    PC 7夏季/秋季可在薄当年冰条件下作业,可掺杂旧冰< 0.7
    下载: 导出CSV

    表  2  俄罗斯船级社冰级规范

    Table  2.   RMRS IR

    冰级符号冰级描述
    Icebreaker 6 适用于冰厚度达1.5 m的港口、锚泊水域以及冰区海域的破冰作业;在未破碎海冰中的连续破冰能力可达1.0 m。
    Icebreaker 7 适用于北冰洋沿岸航道的破冰作业,冬季/春季航行冰厚度可达2.0 m,夏季/秋季航行可达2.5 m;或在非北极冰区海域和北冰洋河流入海口的破冰作业,冰厚度可达2.0 m;在未破碎海冰中的连续破冰能力可达1.5 m,轴输出总功率应不低于11 MW。
    Icebreaker 8 适用于北冰洋沿岸航道的破冰作业,冬季/春季航行冰厚度可达3.0 m,夏季/秋季航行没有限制;在未破碎海冰中的连续破冰能力可达2.0 m,轴输出总功率应不低于22 MW。
    Icebreaker 9 适用于北冰洋沿岸航道的破冰作业,冬季/春季航行冰厚度可达4.0 m,夏季/秋季航行没有限制;在未破碎海冰中的连续破冰能力超过2.0 m,轴输出总功率应不低于48 MW。
    下载: 导出CSV

    表  3  PC冰级船舶的调研结果

    Table  3.   Surveying results for polar class ships

    船舶名称冰级船型总长/m总宽/m吃水/m总功率/MW破冰能力
    (航速kn/平整冰厚m)
    Aurora BorealisPC 1破冰船199.8549.0013.0081.003/2.5+
    (平整冰厚超过2.5 m)
    Le Commandant CharcotPC 2极地探险邮轮158.0028.0010.0034.003/2.5
    CCGS John G. DiefenbakerPC 2破冰船150.1028.0010.5034.003/2.5
    NuyinaPC 3破冰船160.3025.609.3026.603/1.65
    Kronprins HaakonPC 3科考船100.3821.008.6611.004/1.0
    Xue Long 2PC 3科考船122.5022.307.9015.003/1.5
    OBPC 3破冰船89.2021.907.5012.002/1.5
    AudaxPC 3极地重载甲板运输船206.3043.007.5024.003/1.5
    PugnaxPC 3极地重载甲板运输船206.3043.007.5024.003/1.5
    CCGS Louis S. St-LaurentPC 4破冰船119.8024.389.9118.003/1.0
    NunavikPC 4散货船188.8026.6010.20.22.003/1.5
    OtsoPC 4破冰船99.0024.208.0015.0010/0.8
    RRS Sir David AttenboroughPC 4破冰船128.9024.007.0011.003/1.0
    PolarisPC 4破冰船110.0024.008.0019.003.5/1.8
    Antarctic IPC 5破冰船110.0021.007.209.003/1.0
    Arctic AframaxPC 5油船266.0046.0014.8022.003/1.0
    S. A. Agulhas IIPC 5科考船134.2021.707.659.005/1.0
    SikuliaqPC 5科考船79.6015.855.725.002/1.0
    下载: 导出CSV

    表  4  RMRS IR冰级船舶的调研结果

    Table  4.   Surveying results for RMRS IR ships

    船舶名称冰级船型总长/m总宽/m吃水/m总功率/MW破冰能力
    (航速kn/平整冰厚m)
    Lider
    (LK-120Ya)
    Icebreaker 9破冰船209.0047.7013.00120.002/4.0+
    Arktika
    (LK-60Ya)
    Icebreaker 9破冰船173.3034.0010.5060.002/2.8
    Aleksandr Sannikov
    (ARC 130A)
    Icebreaker 8破冰船121.7026.008.0021.502/2.0
    Andrey Vilkitsky
    (ARC 130A)
    Icebreaker 8破冰船121.7026.008.0021.502/2.0
    Viktor Chernomyrdin
    (LK-25)
    Icebreaker 8破冰船146.8029.009.7025.002/2.0
    Admiral MakarovIcebreaker 8破冰船134.8426.0511.0026.462/1.8
    KrasinIcebreaker 8破冰船134.8426.0511.0026.462/1.8
    下载: 导出CSV

    表  5  PC冰级船舶的连续破冰能力

    Table  5.   Continuous ice-breaking ability of polar class ships

    冰级符号平整冰破冰能力
    PC 1以3 kn航速穿越平整冰厚超过2.5 m厚的海域
    PC 2以3 kn航速穿越平整冰厚达2.5 m的海域
    PC 3以3 kn航速穿越平整冰厚达1.5 m的海域
    PC 4以3 kn航速穿越平整冰厚达1.3 m的海域
    PC 5以3 kn航速穿越平整冰厚达1.0 m的海域
    下载: 导出CSV

    表  6  东北航道沿线海域的独立可达船舶冰级

    Table  6.   Independently accessible ice-class ships of northeast passage waters

    季节海域
    挪威海巴伦支海喀拉海拉普捷夫海东西伯利亚海楚科奇海
    春季 PC 5 PC 5 PC 4 PC 2 PC 2 PC 2
    夏季 PC 5 PC 5 PC 5 PC 5 PC 5 PC 5
    秋季 PC 5 PC 5 PC 5 PC 5 PC 5 PC 5
    冬季 PC 5 PC 5 PC 5 PC 3 PC 2 PC 2
    下载: 导出CSV

    表  7  西北航道沿线海域的独立可达船舶冰级

    Table  7.   Independently accessible ice-class ships of northwest passage waters

    季节海域
    戴维斯海峡巴芬湾加拿大群岛海域波弗特海楚科奇海
    春季 PC 5 PC 4 PC 2 PC 3 PC 3
    夏季 PC 5 PC 5 PC 5 PC 5 PC 5
    秋季 PC 5 PC 5 PC 2 P C5 PC 5
    冬季 PC 5 PC 4 PC 1 PC 3 PC 3
    下载: 导出CSV

    表  8  船型参数

    Table  8.   Hull parameters

    船舶名称水线长/m船宽/m吃水/m艏柱角/(°)水线角/(°)外飘角/(°)主机总功率/MW
    Aleksandr Sannikov107.926.08.021.041.030.021.5
    雪龙2116.022.37.920.034.037.015
    Polaris97.424.08.022.050.028.019
    下载: 导出CSV

    表  9  破冰条件

    Table  9.   Ice breaking abilities

    船舶名称破冰
    厚度/m
    破冰
    航速/kn
    覆雪
    厚度/m
    冰弯曲
    强度/kPa
    Aleksandr Sannikov2.02.00.3950
    雪龙21.53.00.2725
    Polaris1.83.50500
    下载: 导出CSV

    表  10  冰阻力和推进效率的计算结果

    Table  10.   Calculation results of ice resistances and propulsion efficiencies

    计算结果Aleksandr Sannikov雪龙2Polaris
    冰挤压破坏阻力/N1 133 460483 545496 776
    冰弯曲破坏阻力/N399 967227 847143 975
    冰漂浮阻力的
    势能损失分量/N
    436 460267 539311 593
    冰漂浮阻力的
    摩擦损失分量/N
    720 452484 307480 898
    特定航速下的
    总冰阻力/N
    3 533 1692 187 4832 251 780
    有效功率/MW
    3.633.384.05
    收到功率/MW7.5×2+6.57.5×26.5×2+6
    推进效率/%
    16.922.521.3
    下载: 导出CSV

    表  11  需要功率估算和验证

    Table  11.   Estimation and validation of required power

    参数船舶名称
    VladivostokAudaxBoris Sokolov
    船型IcebreakerModule CarrierOil Tanker
    冰级Icebreaker 7
    (RMRS)
    PC 3
    (IACS)
    Arc 7
    (RMRS)
    水线长/m104.0194.0208.0
    船宽/m28.043.034.0
    吃水/m8.507.5012.9
    破冰能力
    (航速kn/平整冰厚m)
    3.5/1.03/1.52/1.8
    预测冰阻力/MN2.0253.7834.419
    平均推进效率20.2%
    预测需要功率/MW182923
    实船吊舱功率/MW182422
    下载: 导出CSV

    表  12  Azipod系列的极区船舶吊舱推进器适配建议[23]

    Table  12.   Adaptation recommendations for Azipod series pod propulsions of polar ships

    吊舱推进器类型功率范围/ MW最大适配冰级
    Azipod DO1.5~7.5PC 5
    Azipod XO8~22PC 5
    Azipod ICE2~5PC 2
    Azipod VI6~17PC 1
    下载: 导出CSV

    表  13  典型极区船舶的主尺度

    Table  13.   Principal dimensions of typical polar ships

    典型船型典型船长/m典型船宽/kn典型吃水/m
    科考破冰船120248
    大型破冰船1502910
    冰区散货船172710
    冰区“阿芙拉”级油轮2503414
    大型冰区LNG船3005013
    下载: 导出CSV

    表  14  艉部双吊舱的应用条件

    Table  14.   Applicability of twin podded propulsors

    典型船型对应PC冰级下的需要功率/ MW
    PC 1PC 2PC 3PC 4PC 5
    科考破冰船494118139
    大型破冰船5849231713
    冰区散货船5749221713
    冰区“阿芙拉”级油轮7767332620
    大型冰区LNG船10095504031
    下载: 导出CSV

    表  15  艉部三吊舱的应用条件

    Table  15.   Applicability of three podded propulsors

    典型船型对应PC冰级下的需要功率/ MW
    PC 1PC 2PC 3PC 4PC 5
    科考破冰船494118139
    大型破冰船5849231713
    冰区散货船5749221713
    冰区“阿芙拉”级油轮7767332620
    大型冰区LNG船10095504031
    下载: 导出CSV
  • [1] BIRD K J, CHARPENTIER R R, GAUTIER D L, et al. Circum-arctic resource appraisal: estimates of undiscovered oil and gas north of the arctic circle[R]. [S. l. ]: U. S. Geological Survey, 2008.
    [2] PEROVICH D K, RICHTER M J A. Loss of sea ice in the Arctic[J]. Annual Review of Marine Science, 2009, 1: 417–441. doi: 10.1146/annurev.marine.010908.163805
    [3] PAKASTE R, LAUKIA K, WILHELMSON M, et al. Experience with Azipod propulsion systems on board marine vessels[J]. ABB Review, 1999, 2: 12–18.
    [4] 郑安宾, 田忠殿, 胡举喜, 等. 吊舱推进器的发展及应用前景[J]. 液压气动与密封, 2019, 39(6): 1–3, 7. doi: 10.3969/j.issn.1008-0813.2019.06.001

    ZHENG A B, TIAN Z D, HU J X, et al. Development and application of podded propulsor[J]. Hydraulics Pneumatics & Seals, 2019, 39(6): 1–3, 7 (in Chinese). doi: 10.3969/j.issn.1008-0813.2019.06.001
    [5] 高宜朋, 曾凡明, 张晓锋. 吊舱推进器在舰船推进系统中的发展现状及关键技术分析[J]. 中国舰船研究, 2011, 6(1): 90–96. doi: 10.3969/j.issn.1673-3185.2011.01.018

    GAO Y P, ZENG F M, ZHANG X F. Recent research on podded propulsor and analysis of key technologies for naval vessels[J]. Chinese Journal of Ship Research, 2011, 6(1): 90–96 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.01.018
    [6] 郑世博, 索双武, 刘春辉, 等. 冰区加强大型商船推进系统研究[J]. 舰船科学技术, 2015, 37(5): 114–118. doi: 10.3404/j.issn.1672-7649.2015.05.024

    ZHENG S B, SUO S W, LIU C H, et al. Research on the propulsion system for ice strengthening huge merchant ship[J]. Ship Science and Technology, 2015, 37(5): 114–118 (in Chinese). doi: 10.3404/j.issn.1672-7649.2015.05.024
    [7] 王迎晖, 贺俊松, 田于逵, 等. 极地船舶吊舱结构冰载荷计算方法研究[J]. 船舶力学, 2017(增刊1): 627–630.

    WANG Y H, HE J S, TIAN Y K, et al. Research on calculation methods of ice loads on pod structures of polar ship[J]. Journal of Ship Mechanics, 2017(Supp1): 627–630 (in Chinese).
    [8] 吴文翔. 吊舱推进破冰船的艉部型线初步设计[J]. 船舶工程, 2017, 39(4): 21–23, 43.

    WU W X. Initial design of aft lines of icebreaker with pod propulsion[J]. Ship Engineering, 2017, 39(4): 21–23, 43 (in Chinese).
    [9] ISLAM M, JAHRA F, MOLYNEUX D, et al. Numerical research on usage of podded propulsors in ice management[C]//OTC Arctic Technology Conference. Copenhagen, Denmark: Offshore Technology Conference, 2015.
    [10] DOBRODEEV A, SAZONOV K, ANDRYUSHIN A, et al. Experimental studies of ice loads on pod propulsors of ice-going support ships[C]//Proceedings of the 24th International Conference on Port and Ocean Engineering under Arctic Conditions. Busan, South Korea: POAC, 2017.
    [11] 龚丞. 极地破冰船冰区结构设计规范对比研究[J]. 船舶, 2017, 28(1): 84–93.

    GONG C. Comparative study of structural design rules for polar icebreaker ships[J]. Ship & Boat, 2017, 28(1): 84–93 (in Chinese).
    [12] International Association of Classification Societies. Requirements concerning polar class[S]. [S.l.]: IACS, 2011.
    [13] World Meteorological Organization. WMO sea-ice nomenclature: terminology, codes, illustrated glossary and symbols[S]. [S.l.]: Secretariat of the World Meteorological Organization, 2014.
    [14] TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003
    [15] Finnish Maritime Administration. Finnish-Swedish ice class rules[S]. [S.l.]: Finnish Transport Safety Agency, 2017.
    [16] 潘增弟. 中国第六次北极科学考察报告[M]. 北京: 海洋出版社, 2015.

    PAN Z D. The report of 2014 Chinese Arctic research expedition[M]. Beijing: China Ocean Press, 2015.
    [17] 李院生. 中国第七次北极科学考察报告[M]. 北京: 海洋出版社, 2018.

    LI Y S. The report of 2016 Chinese national Arctic research expedition[M]. Beijing: China Ocean Press, 2018.
    [18] Arctic Council. Arctic marine shipping assessment 2009 report[R]. Tromsø: Arctic Council, 2009.
    [19] JEONG S Y, CHOI K, KANG K J, et al. Prediction of ship resistance in level ice based on empirical approach[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(6): 613–623. doi: 10.1016/j.ijnaoe.2017.03.007
    [20] JONES S J. Resistance and propulsion model tests of the USCGC Healy (model 546) in ice[R]. St. John's, NL, Canada: Institute for Ocean Technology, National Research Council of Canada, 2005.
    [21] LINDQVIST G. A straightforward method for calculation of ice resistance of ships[C]//Proceedings of the 10th International Conference on Port and Ocean Engineering under Arctic Conditions. Lulea, Sweden: POAC, 1989.
    [22] ERCEG S, EHLERS S. Semi-empirical level ice resistance prediction methods[J]. Ship Technology Research, 2017, 64(1): 1–14. doi: 10.1080/09377255.2016.1277839
    [23] KOKKILA M. Polar expedition ships: ultimate passenger safety and comfort with Azipod propulsion[EB/OL]. [2021-01-26].https://new.abb.com/docs/librariesprovider91/leaflets-brochures/abb_whitepaper_polar_cruise_kokkila.pdf.
    [24] American Bureau of Shipping. Guidance notes on ice loads on azimuthing propulsion units august 2020[EB/OL]. [2021-01-26].https://ww2.eagle.org/content/dam/eagle/rules-and-guides/current/special_service/235_Guidance_Notes_on_Ice_Loads_on_Azimuthing_Propulsion_Units/apu-ice-loads-gn-aug20.pdf.
  • 加载中
图(5) / 表(15)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-05-28
  • 网络出版日期:  2021-06-04

目录

    /

    返回文章
    返回