留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FTESO和漂角补偿的船舶航向滑模控制

储瑞婷 刘志全

储瑞婷, 刘志全. 基于FTESO和漂角补偿的船舶航向滑模控制[J]. 中国舰船研究, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267
引用本文: 储瑞婷, 刘志全. 基于FTESO和漂角补偿的船舶航向滑模控制[J]. 中国舰船研究, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267
CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267
Citation: CHU R T, LIU Z Q. Ship course sliding mode control system based on FTESO and sideslip angle compensation[J]. Chinese Journal of Ship Research, 2022, 17(1): 71–79 doi: 10.19693/j.issn.1673-3185.02267

基于FTESO和漂角补偿的船舶航向滑模控制

doi: 10.19693/j.issn.1673-3185.02267
基金项目: 国家自然科学基金资助项目(52001197);上海市地方院校能力建设专项项目资助(19040501600)
详细信息
    作者简介:

    储瑞婷,女,1997年生,硕士生。研究方向:船舶航向控制。E-mail:1398555801@qq.com

    刘志全,男,1986年生,博士,副教授。研究方向:船舶运动控制。E-mail:liuzhiquan215@sina.com

    通信作者:

    刘志全

  • 中图分类号: U664.82

Ship course sliding mode control system based on FTESO and sideslip angle compensation

知识共享许可协议
基于FTESO和漂角补偿的船舶航向滑模控制储瑞婷,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为提高水面欠驱动船舶的航向跟踪性能,减小航向误差,研究一种基于有限时间扩张状态观测器(FTESO)的船舶航向滑模控制方法。  方法  首先,采用预滤波器减小船舶转向时较大的航向变化率影响,利用扩张状态观测器对时变漂角进行估计,然后通过估计出的漂角及时修正航向误差。为简化控制器设计,艏摇方向上的外部扰动和内部不确定项由观测器同时估计,并在控制器设计中进行补偿。选取含积分项的滑模面,结合FTESO设计滑模控制律,并考虑输入饱和约束,最终通过李雅普诺夫理论证明控制系统的稳定性。  结果  仿真结果显示,所研究的控制方法使水面船舶能够在较短的时间内减小航向跟踪误差并收敛至0。  结论  研究成果可为水面船舶航向跟踪控制设计提供参考。
  • 图  1  漂角补偿后的期望航向

    Figure  1.  The desired heading with sideslip angle compensation

    图  2  船舶航向控制系统示意图

    Figure  2.  Schematic diagram of the heading control system for ships

    图  3  无约束下控制器的航向和控制力矩对比

    Figure  3.  Comparison of heading angles and yaw torque of the controllers without input constraint

    图  4  有输入约束下控制器的航向及其误差对比

    Figure  4.  Comparison of heading angles and their errors of the controllers with input constraint

    图  5  漂角估计值

    Figure  5.  The estimation of sideslip angle

    图  6  有输入约束的艏摇控制力矩对比

    Figure  6.  Comparison of yaw torque of the controllers with input constraint

    图  7  有输入约束时纵荡、横荡及艏摇方向上的速度估计值及其误差

    Figure  7.  The estimations and errors of velocity in surge, sway and yaw directions with input constraint

    表  1  不同控制方法下的参数设计

    Table  1.   The parameters of different controllers

    控制方法控制器观测器
    ${k_1}$${k_2}$$p$${b_1}$${b_2}$${m_1}$${m_2}$${n_1}$${n_2}$${\alpha _1}$
    考虑漂角2030.64.80.1103000.010.010.75
    不考虑漂角1020.650.3153500.010.010.75
    下载: 导出CSV
  • [1] 吴瑞, 杜佳璐, 孙玉清, 等. 基于状态反馈线性化和ESO的船舶航向跟踪控制[J]. 大连海事大学学报, 2019, 45(3): 93–99.

    WU R, DU J L, SUN Y Q, et al. Ship course tracking control based on the state feedback linearization and ESO[J]. Journal of Dalian Maritime University, 2019, 45(3): 93–99 (in Chinese).
    [2] ZHANG X K, ZHANG Q, REN H X, et al. Linear reduction of backstepping algorithm based on nonlinear decoration for ship course-keeping control system[J]. Ocean Engineering, 2018, 147: 1–8. doi: 10.1016/j.oceaneng.2017.10.017
    [3] PERERA L P, SOARES C G. Pre-filtered sliding mode control for nonlinear ship steering associated with disturbances[J]. Ocean Engineering, 2012, 51: 49–62. doi: 10.1016/j.oceaneng.2012.04.014
    [4] 沈智鹏, 邹天宇. 控制方向未知的无人帆船自适应动态面航向控制[J]. 哈尔滨工程大学学报, 2019, 40(1): 94–101.

    SHEN Z P, ZOU T Y. Adaptive dynamic surface course control for an unmanned sailboat with unknown control direction[J]. Journal of Harbin Engineering University, 2019, 40(1): 94–101 (in Chinese).
    [5] 朱冬健, 马宁, 顾解忡. 船舶航向非线性系统自适应模糊补偿控制[J]. 上海交通大学学报, 2015, 49(2): 250–254, 261.

    ZHU D J, MA N, GU X C. Adaptive fuzzy compensation control for nonlinear ship course-keeping[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2): 250–254, 261 (in Chinese).
    [6] 王东委, 富月. 基于高阶观测器和干扰补偿控制的模型预测控制方法[J]. 自动化学报, 2020, 46(6): 1220–1228.

    WANG D W, FU Y. Model predict control method based on higher-order observer and disturbance compensation control[J]. Acta Automatica Sinica, 2020, 46(6): 1220–1228 (in Chinese).
    [7] PERERA L P, SOARES C G. Lyapunov and Hurwitz based controls for input–output linearisation applied to nonlinear vessel steering[J]. Ocean Engineering, 2013, 66: 58–68. doi: 10.1016/j.oceaneng.2013.04.002
    [8] HU C, WANG R R, YAN F J, et al. Robust composite nonlinear feedback path-following control for underactuated surface vessels with desired-heading amendment[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6386–6394. doi: 10.1109/TIE.2016.2573240
    [9] BEVLY D A, RYU J, GERDES J C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(4): 483–493. doi: 10.1109/TITS.2006.883110
    [10] WANG N, SUN Z, YIN J C, et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6: 14059–14070. doi: 10.1109/ACCESS.2018.2797084
    [11] 李芸, 白响恩, 肖英杰. 基于新型扩张干扰观测器的船舶航向滑模控制[J]. 上海交通大学学报, 2014, 48(12): 1708–1713, 1720.

    LI Y, BAI X E, XIAO Y J. Ship course sliding mode control system based on a novel extended state disturbance observer[J]. Journal of Shanghai Jiao Tong University, 2014, 48(12): 1708–1713, 1720 (in Chinese).
    [12] XIONG S F, WANG W H, LIU X D, et al. A novel extended state observer[J]. ISA Transactions, 2015, 58: 309–317. doi: 10.1016/j.isatra.2015.07.012
    [13] LIANG K, LIN X G, CHEN Y, et al. Adaptive sliding mode output feedback control for dynamic positioning ships with input saturation[J]. Ocean Engineering, 2020, 206: 107245. doi: 10.1016/j.oceaneng.2020.107245
    [14] AN L, LI Y, CAO J, et al. Proximate time optimal for the heading control of underactuated autonomous underwater vehicle with input nonlinearities[J]. Applied Ocean Research, 2020, 95: 102002. doi: 10.1016/j.apor.2019.102002
    [15] PERRUQUETTI W, FLOQUET T, MOULAY E. Finite-time observers: application to secure communication[J]. IEEE Transactions on Automatic Control, 2008, 53(1): 356–360. doi: 10.1109/TAC.2007.914264
    [16] ROSIER L. Homogeneous Lyapunov function for homogeneous continuous vector field[J]. Systems and Control Letters, 1992, 19(6): 467–473. doi: 10.1016/0167-6911(92)90078-7
    [17] HONG Y G, WANG J K, CHENG D Z. Adaptive finite-time control of nonlinear systems with parametric uncertainty[J]. IEEE Transactions on Automatic Control, 2006, 51(5): 858–862. doi: 10.1109/TAC.2006.875006
    [18] SHEN Y J, XIA X H. Semi-global finite-time observers for nonlinear systems[J]. Automatica, 2008, 44(12): 3152–3156. doi: 10.1016/j.automatica.2008.05.015
    [19] HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities[M]. Cambridge: Cambridge University Press, 1952.
    [20] ZOU A M, DE RUITER A H J, KUMAR K D. Distributed finite-time velocity-free attitude coordination control for spacecraft formations[J]. Automatica, 2016, 67: 46–53. doi: 10.1016/j.automatica.2015.12.029
    [21] DO K D, JIANG Z P, PAN J. Robust adaptive path following of underactuated ships[J]. Automatica, 2004, 40(6): 929–944. doi: 10.1016/j.automatica.2004.01.021
    [22] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals, and Systems, 2005, 17(2): 101–127. doi: 10.1007/s00498-005-0151-x
  • ZG2267_en.pdf
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  105
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-16
  • 修回日期:  2021-04-09
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-03-02

目录

    /

    返回文章
    返回