留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动态子结构的轴承动力学及摩擦学耦合分析

杨欣 顾根香 孙思聪 周建明 李赛力

杨欣, 顾根香, 孙思聪, 等. 基于动态子结构的轴承动力学及摩擦学耦合分析[J]. 中国舰船研究, 2021, 16(6): 201–208, 215 doi: 10.19693/j.issn.1673-3185.02265
引用本文: 杨欣, 顾根香, 孙思聪, 等. 基于动态子结构的轴承动力学及摩擦学耦合分析[J]. 中国舰船研究, 2021, 16(6): 201–208, 215 doi: 10.19693/j.issn.1673-3185.02265
YANG X, GU G X, SUN S C, et al. Dynamic and tribological coupling analysis of journal bearing based on dynamic substructure[J]. Chinese Journal of Ship Research, 2021, 16(6): 201–208, 215 doi: 10.19693/j.issn.1673-3185.02265
Citation: YANG X, GU G X, SUN S C, et al. Dynamic and tribological coupling analysis of journal bearing based on dynamic substructure[J]. Chinese Journal of Ship Research, 2021, 16(6): 201–208, 215 doi: 10.19693/j.issn.1673-3185.02265

基于动态子结构的轴承动力学及摩擦学耦合分析

doi: 10.19693/j.issn.1673-3185.02265
基金项目: 国家部委基金资助项目
详细信息
    作者简介:

    杨欣,男,1986年生,博士生,工程师

    通信作者:

    杨欣

  • 中图分类号: U664.21

Dynamic and tribological coupling analysis of journal bearing based on dynamic substructure

知识共享许可协议
基于动态子结构的轴承动力学及摩擦学耦合分析杨欣,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  分析主轴承的动力学与摩擦学特性以及其相互耦合关系。  方法  首先,利用子结构法建立轴承磨损试验台耦合摩擦特性的动力学模型;然后,通过该动力学模型计算得到轴承摩擦耗功和轴心轨迹并与实测结果进行比较,验证模型的正确性;最后,在该模型的基础上进行主轴承摩擦学和动力学的耦合分析。  结果  结果显示,试验台的4个支撑轴承均处于液动润滑状态,被测轴承在上止点处于混合润滑状态;随着轴承间隙的增大,轴承试验台被测轴承最小油膜厚度先增大后减小,当间隙在20 μm左右时可以得到最佳润滑状态;相比非线性弹簧的油膜模型,采用EHD模型可得到精度更高的轴承载荷和摩擦功耗。  结论  研究结果可为轴承副的润滑性能设计和高精度建模提供理论指导。
  • 图  1  EHD仿真计算流程图

    Figure  1.  Flow chart of EHD simulation

    图  2  轴承磨损试验台的三维结构

    Figure  2.  Three-dimensional structure of bearing wear test bed

    图  3  轴承磨损试验台动力学模型

    Figure  3.  Dynamic model of bearing wear test bed

    图  4  轴承磨损试验台动力学模型

    Figure  4.  Dynamic model of bearing wear test bed

    图  5  轴承磨损试验台计算结果验证

    Figure  5.  Verification of calculation results of bearing wear test bed

    图  6  各轴承油膜总压分布彩图

    Figure  6.  Oil film total pressure distribution of different bearing

    图  7  各轴承油膜粗糙接触压力分布彩图

    Figure  7.  Oil film asperity contact pressure distribution of different bearings

    图  8  润滑特性随间隙变化的趋势

    Figure  8.  Variation of lubrication characteristics with clearance

    图  9  一周期内摩擦功耗和载荷

    Figure  9.  Friction power consumption and load in one cycle

    图  10  2种建模方式下载荷频域力的对比

    Figure  10.  Comparison of load force between two modeling methods in frequency domain

    表  1  轴承磨损试验台主要参数

    Table  1.   Main parameters of bearing wear test bed

    参数数值参数数值
    轴承宽度b/mm29油孔位置/(°)45
    轴颈直径/mm52.68油孔直径/mm4
    径向(半径)间隙c/μm250进油温度/℃55
    支撑轴瓦1(半径)间隙c1/μm50进油压力/bar9
    支撑轴瓦2(半径)间隙c2/μm50轴颈表面粗糙度/μm0.4
    润滑油牌号10W-30轴瓦表面粗糙度/μm0.5
    下载: 导出CSV

    表  2  主要零部件有限元模型与缩减模型

    Table  2.   Finite element model and condensed model of main parts

    零部件有限元模型缩减模型
    偏心轴
    支撑轴承座
    连杆
    下载: 导出CSV

    表  3  偏心轴有限元模型与缩减模型模态对比

    Table  3.   Comparison of modal frequency between finite element models and condensed model of eccentric shaft

    阶数频率/Hz误差/%振型
    有限元模型缩减模型
    11 708.51 710.50.117YZ 面内弯曲模态
    21 718.71 721.70.175XZ 面内弯曲模态
    34 021.64 020.4−0.030扭转模态
    44 332.64 344.50.275YZ 面内弯曲模态
    54 360.84 362.90.048XZ 面内弯曲模态
    下载: 导出CSV

    表  4  连杆有限元模型与缩减模型模态对比

    Table  4.   Comparison of modal frequency between finite element model and condensed model of connecting rod

    阶数频率/Hz误差/%振型
    有限元模型缩减模型
    1963.5963.23−0.03XZ 面内弯曲模态
    21 213.61 212.4−0.10扭转模态
    31 558.61 554.6−0.26YZ 面内弯曲模态
    41 816.41 814.4−0.11小端局部模态
    52 644.12 645.10.038扭转模态
    下载: 导出CSV

    表  5  轴承磨损试验台主要测试参数

    Table  5.   Main test parameters of bearing wear test bed

    传感器信号类型被测对象
    位移传感器位移轴心轨迹
    扭矩仪扭矩摩擦功耗
    温度传感器温度瓦背温度
    压力传感器压力供油压力
    下载: 导出CSV

    表  6  各轴承EHD润滑计算结果

    Table  6.   EHD calculation results of diffrent bearings of the test bed

    轴承号性能参数
    pmax /MPahmin /μmλγ/%Wm /W
    12.8720.8732.610241.74
    216.518.0712.610318.92
    3106.781.382.031.42486.89
    416.498.0712.610319.03
    52.6820.8932.640248.67
    下载: 导出CSV
  • [1] 李正民, 何琳, 徐伟, 等. 轴承润滑特性对船舶推进轴系校中的影响[J]. 中国舰船研究, 2016, 11(6): 104–111. doi: 10.3969/j.issn.1673-3185.2016.06.016

    LI Z M, HE L, XU W, et al. The influence of bearing lubrication characteristics on marine propulsion shaft alignment[J]. Chinese Journal of Ship Research, 2016, 11(6): 104–111 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.06.016
    [2] 孙谦, 刘文玺, 周其斗. 推力轴承基座结构形式对潜艇振动噪声的影响[J]. 中国舰船研究, 2018, 13(5): 39–45. doi: 10.19693/j.issn.1673-3185.01099

    SUN Q, LIU W X, ZHOU Q D. Influence of thrust bearing seating on acoustic radiation of submarine[J]. Chinese Journal of Ship Research, 2018, 13(5): 39–45 (in Chinese). doi: 10.19693/j.issn.1673-3185.01099
    [3] WANG D E, KEITH T G, YANG Q M, et al. Lubrication analysis of a connecting-rod bearing in a high-speed engine. Part II: lubrication performance evaluation for non-circular bearings[J]. Tribology Transactions, 2004, 47(2): 290–298. doi: 10.1080/05698190490439436
    [4] WANG D E, KEITH T G, YANG Q M, et al. Lubrication analysis of a connecting-rod bearing in a high-speed engine. Part I: rod and bearing deformation[J]. Tribology Transactions, 2004, 47(2): 280–289. doi: 10.1080/05698190490439346
    [5] CRAIG JR R R, BAMPTON M C C. Coupling of substructures for dynamic analyses[J]. AIAA Journal, 1968, 6(7): 1313–1319. doi: 10.2514/3.4741
    [6] CRAIG JR R R, CHANG C J. Free-interface methods of substructure coupling for dynamic analysis[J]. American Institute of Aeronautics and Astronautics, 1976, 14(11): 1633–1635. doi: 10.2514/3.7264
    [7] 杜大华, 贺尔铭, 李锋. 基于多重动态子结构法的大型复杂结构动力分析技术[J]. 推进技术, 2018, 39(8): 1849–1855.

    DU D H, HE E M, LI F. Dynamics analysis technology of large-scale complex structures based on multilevel dynamic substructure method[J]. Journal of Propulsion Technology, 2018, 39(8): 1849–1855 (in Chinese).
    [8] 李红. 碰摩转子系统动力学特性及其故障分析研究[D]. 北京: 华北电力大学, 2016.

    LI H. Research on dynamic characteristics and fault analysis of rubbing rotor system[D]. Beijing: North China Electric Power University, 2016 (in Chinese).
    [9] GREENWOOD J A, TRIPP J H. The contact of two nominally flat rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers, 1970, 185(1): 625–633. doi: 10.1243/PIME_PROC_1970_185_069_02
    [10] PATIR N, CHENG H S. Application of average flow model to lubrication between rough sliding surfaces[J]. Journal of Lubrication Technology, 1979, 101(2): 220–229. doi: 10.1115/1.3453329
    [11] BUKOVNIK S, DÖRR N, ČAIKA V, et al. Analysis of diverse simulation models for combustion engine journal bearings and the influence of oil condition[J]. Tribology International, 2006, 39(8): 820–826. doi: 10.1016/j.triboint.2005.07.023
    [12] 卢伯聪, 向建华, 庄林毅. 基于动态子结构的主轴承热弹性流体润滑研究[J]. 润滑与密封, 2012, 37(1): 22–28. doi: 10.3969/j.issn.0254-0150.2012.01.006

    LU B C, XIANG J H, ZHUANG L Y. Thermo-elastohydrodynamic lubrication research on engine main bearings based on the dynamic substructure theory[J]. Lubrication Engineering, 2012, 37(1): 22–28 (in Chinese). doi: 10.3969/j.issn.0254-0150.2012.01.006
    [13] ALLMAIER H, PRIESTNER C, REICH F M, et al. Predicting friction reliably and accurately in journal bearings–the importance of extensive oil-models[J]. Tribology International, 2012, 48: 93–101. doi: 10.1016/j.triboint.2011.11.009
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  91
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-24
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回