留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂扰动下水下机器人的轨迹精确跟踪控制

陈浩华 赵红 王宁 郭晨 鲁挺 王宁

陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98–108 doi: 10.19693/j.issn.1673-3185.02236
引用本文: 陈浩华, 赵红, 王宁, 等. 复杂扰动下水下机器人的轨迹精确跟踪控制[J]. 中国舰船研究, 2022, 17(2): 98–108 doi: 10.19693/j.issn.1673-3185.02236
CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98–108 doi: 10.19693/j.issn.1673-3185.02236
Citation: CHEN H H, ZHAO H, WANG N, et al. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98–108 doi: 10.19693/j.issn.1673-3185.02236

复杂扰动下水下机器人的轨迹精确跟踪控制

doi: 10.19693/j.issn.1673-3185.02236
基金项目: 国家自然科学基金资助项目(51579024);装备预研重点实验室基金资助项目(6142215200106);辽宁省“兴辽英才计划”资助项目(XLYC1807013);中央高校基本科研业务费专项资金资助项目(3132019318, 3132019344)
详细信息
    作者简介:

    陈浩华,男,1995年生,硕士生。研究方向:水下机器人轨迹跟踪控制。E-mail:chenhaohua0617@163.com

    赵红,女,1967年生,博士,教授。研究方向:电气传动与控制,船舶电力推进,智能控制在电气工程领域的应用。E-mail:zhaohong@dlmu.edu.cn

    王宁 ,男,1983年生,博士,教授,博士生导师。研究方向:海洋机器人、无人驾驶船舶和自主系统的智能控制。E-mail:n.wang@ieee.org

    通信作者:

    王宁

  • 中图分类号: U674.941

Accurate track control of unmanned underwater vehicle under complex disturbances

知识共享许可协议
复杂扰动下水下机器人的轨迹精确跟踪控制陈浩华,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  针对外界复杂干扰下水下机器人三维轨迹精确跟踪控制的问题,提出一种基于有限时间扰动观测器的非奇异终端滑模控制方法。  方法  设计非奇异终端滑模轨迹跟踪控制器,保证跟踪误差在有限时间内精确收敛到零。在外界多维度时变干扰下,设计有限时间扰动观测器,提高系统的抗干扰能力。  结果  利用Lyapunov函数证明所设计控制策略可以有限时间稳定。采用MATLAB进行仿真实验,在阶跃扰动下与反步滑模控制方法仿真对比,表明所提方法可实现轨迹的精确跟踪。  结论  研究结果可为水下机器人的三维轨迹精确跟踪提供解决思路。
  • 图  1  坐标系

    Figure  1.  Coordinate system

    图  2  工况1的跟踪轨迹

    Figure  2.  The tracking trajectory for condition 1

    图  3  工况1的位姿状态曲线

    Figure  3.  Position states for condition 1

    图  4  工况1的位姿跟踪误差曲线

    Figure  4.  Position errors for condition 1

    图  5  工况1的控制输入曲线

    Figure  5.  Control input for condition 1

    图  6  工况1的速度状态曲线

    Figure  6.  Speed states for condition 1

    图  7  工况1的速度跟踪误差曲线

    Figure  7.  Velocity errors for condition 1

    图  8  工况1的水下扰动及其观测曲线

    Figure  8.  Disturbance and observed values for condition 1

    图  9  工况2的跟踪轨迹

    Figure  9.  The tracking trajectory for condition 2

    图  10  工况2的位姿状态曲线

    Figure  10.  Position states for condition 2

    图  11  工况2的位姿跟踪误差曲线

    Figure  11.  Position errors for condition 2

    图  12  工况2的控制输入曲线

    Figure  12.  Control input for condition 2

    图  13  工况2的速度状态曲线

    Figure  13.  Speed states for condition 2

    图  14  工况2的速度跟踪误差曲线

    Figure  14.  Velocity errors for condition 2

    图  15  工况2的水下扰动及其观测曲线

    Figure  15.  Disturbance and observed values for condition 2

    图  16  工况3的跟踪轨迹

    Figure  16.  The tracking trajectory for condition 3

    图  17  工况3的位姿状态曲线

    Figure  17.  Position states for condition 3

    图  18  工况3的位姿跟踪误差曲线

    Figure  18.  Position errors for condition 3

    图  19  工况3的控制输入曲线

    Figure  19.  Control input for condition 3

    图  20  工况3的速度状态曲线

    Figure  20.  Speed states for condition 3

    图  21  工况3的速度跟踪误差曲线

    Figure  21.  Velocity errors for condition 3

    图  22  工况3的水下扰动及其观测曲线

    Figure  22.  Disturbance and observed values for condition 3

    表  1  三种方法的性能比较

    Table  1.   Performance comparison of three methods

    性能指标FDO-NTSMCBSMCNTSMC
    IAE$ {x_{\text{e}}} $0.462 71.061 01.265 8
    $ {y_{\text{e}}} $0.356 20.766 61.603 3
    $ {z_{\text{e}}} $0.395 60.528 42.460 3
    $ {\theta _{\text{e}}} $1.593 22.050 12.326 6
    $ {\psi _{\text{e}}} $2.656 42.848 24.142 3
    ITAE$ {x_{\text{e}}} $0.561 224.282 733.159 9
    $ {y_{\text{e}}} $0.292 611.964 851.427 9
    $ {z_{\text{e}}} $0.460 67.384 680.571 9
    $ {\theta _{\text{e}}} $1.779 816.042 016.232 8
    $ {\psi _{\text{e}}} $3.749 617.936 639.832 9
    下载: 导出CSV

    表  2  阶跃扰动下3种方法性能比较

    Table  2.   Performance comparison of three methods under step perturbation

    性能指标FDO-NTSMCBSMCNTSMC
    IAE$ {x_{\text{e}}} $0.626 51.718 25.916 2
    $ {y_{\text{e}}} $0.513 51.456 36.499 6
    $ {z_{\text{e}}} $0.555 31.234 47.711 7
    $ {\theta _{\text{e}}} $1.740 62.576 45.167 5
    $ {\psi _{\text{e}}} $2.820 23.520 08.959 2
    ITAE$ {x_{\text{e}}} $6.568 848.180 9203.403 5
    $ {y_{\text{e}}} $5.986 037.016 3231.457 9
    $ {z_{\text{e}}} $6.288 333.114 5272.619 8
    $ {\theta _{\text{e}}} $7.129 935.028 385.621 4
    $ {\psi _{\text{e}}} $9.733 642.372 9213.641 1
    下载: 导出CSV

    表  3  执行器限幅下3种方法性能比较

    Table  3.   Performance comparison of three methods under the condition of limiting amplitude of control input

    性能指标FDO-NTSMCBSMCNTSMC
    IAE$ {x_{\text{e}}} $0.466 30.940 91.767 4
    $ {y_{\text{e}}} $0.381 30.815 42.326 4
    $ {z_{\text{e}}} $0.437 50.641 13.513 0
    $ {\theta _{\text{e}}} $1.593 22.050 13.422 3
    $ {\psi _{\text{e}}} $1.994 51.690 23.192 1
    ITAE$ {x_{\text{e}}} $0.567 219.343 252.946 8
    $ {y_{\text{e}}} $0.322 011.429 880.644 2
    $ {z_{\text{e}}} $0.528 27.112 8119.339 1
    $ {\theta _{\text{e}}} $1.779 816.042 023.617 4
    $ {\psi _{\text{e}}} $2.423 614.800 656.396 3
    下载: 导出CSV
  • [1] XIANG X B, LAPIERRE L, JOUVENCEL B. Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration[J]. Robotics and Autonomous Systems, 2015, 67: 14–22.
    [2] SANTHAKUMAR M, ASOKAN T. Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration[J]. Ocean Engineering, 2013, 58: 11–21.
    [3] LI H P, YAN W S. Model predictive stabilization of constrained underactuated autonomous underwater vehicles with guaranteed feasibility and stability[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(3): 1185–1194.
    [4] SHEN C, SHI Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking[J]. Automatica, 2020, 115: 108863.
    [5] QIAO L, ZHANG W D. Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances[J]. IEEE Journal of Oceanic Engineering, 2019, 44(1): 29–53.
    [6] 王芳, 万磊, 李晔, 等. 欠驱动AUV的运动控制技术综述[J]. 中国造船, 2010, 51(2): 227–241. doi: 10.3969/j.issn.1000-4882.2010.02.030

    WANG F, WAN L, LI Y, et al. A survey on development of motion control for underactuated AUV[J]. Shipbuilding of China, 2010, 51(2): 227–241 (in Chinese). doi: 10.3969/j.issn.1000-4882.2010.02.030
    [7] QIAO L, ZHANG W D. Double-loop chattering-free adaptive integral sliding mode control for underwater vehicles[C]//OCEANS 2016-Shanghai. Shanghai: IEEE, 2016: 1-6.
    [8] REZAZADEGAN F, SHOJAEI K, SHEIKHOLESLAM F, et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 2015, 107: 246–258.
    [9] GUERRERO J, TORRES J, CREUZE V, et al. Trajectory tracking for autonomous underwater vehicle: an adaptive approach[J]. Ocean Engineering, 2019, 172: 511–522.
    [10] QIAO L, ZHANG W D. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles[J]. IET Control Theory & Applications, 2017, 11(8): 1293–1306.
    [11] 孙巧梅, 陈金国, 余万. 水下航行器三维航迹反演滑模跟踪控制[J]. 舰船科学技术, 2019, 41(1): 66–70. doi: 10.3404/j.issn.1672-7649.2019.01.012

    SUN Q M, CHEN J G, YU W. 3D trajectory-tracking control of autonomous underwater vehicles based on backstepping and sliding mode method[J]. Ship Science and Technology, 2019, 41(1): 66–70 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.01.012
    [12] 魏斯行, 刘晗, 马宁, 等. 基于反步控制和神经动力学模型的带缆水下潜器航迹跟踪[J]. 舰船科学技术, 2020, 42(1): 88–94. doi: 10.3404/j.issn.1672-7649.2020.01.018

    WEI S H, LIU H, MA N, et al. Tracking control for tethered underwater vehicle based on backstepping mode and neurodynamics model[J]. Ship Science and Technology, 2020, 42(1): 88–94 (in Chinese). doi: 10.3404/j.issn.1672-7649.2020.01.018
    [13] 张伟, 滕延斌, 魏世琳, 等. 欠驱动UUV自适应RBF神经网络反步跟踪控制[J]. 哈尔滨工程大学学报, 2018, 39(1): 93–99.

    ZHANG W, TENG Y B, WEI S L, et al. Underactuated UUV tracking control of adaptive RBF neural network and backstepping method[J]. Journal of Harbin Engineering University, 2018, 39(1): 93–99 (in Chinese).
    [14] 严浙平, 段海璞. UUV航迹跟踪的双闭环Terminal滑模控制[J]. 中国舰船研究, 2015, 10(4): 112–117, 142. doi: 10.3969/j.issn.1673-3185.2015.04.017

    YAN Z P, DUAN H P. A double closed-loop Terminal sliding mode controller for the trajectory tracking of UUV[J]. Chinese Journal of Ship Research, 2015, 10(4): 112–117, 142 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.04.017
    [15] WANG N, KARIMI H R. Successive waypoints tracking of an underactuated surface vehicle[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 898–908.
    [16] WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9648–9658.
    [17] 邓琪. 四旋翼飞行器高精度跟踪控制研究[D]. 大连: 大连海事大学, 2019.

    DENG Q. High-precision tracking control of a quadrotor aircraft[D]. Dalian: Dalian Maritime University, 2019 (in Chinese).
    [18] BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041). Albuquerque: IEEE, 1997: 2513-2514.
    [19] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: missile guidance application[J]. Automatica, 2007, 43(8): 1470–1476.
    [20] FOSSEN T I. Guidance and control of ocean vehicles[M]. Chichester: Wiley, 1994.
    [21] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159–2167.
    [22] 梁松. 水下检测与作业机器人ROV控制系统研制及动力定位研究[D]. 镇江: 江苏科技大学, 2017.

    LIANG S. Research on the control system development and dynamic positioning of underwater detection and operation ROV[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017 (in Chinese).
    [23] WANG N, HE H K. Extreme learning-based monocular visual servo of an unmanned surface vessel[J]. IEEE Transactions on Industrial Informatics, 2020. doi: 10.1109/TII.2020.3033794.
    [24] WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 794–803.
    [25] WANG N, Er M J. Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances[J]. IEEE Transactions on Control Systems Technology, 2015, 23(3): 991–1002.
    [26] WANG N, DENG Q, XIE G M, et al. Hybrid finite-time trajectory tracking control of a quadrotor[J]. ISA Transactions, 2019, 90: 278–286.
  • ZG2236_en.pdf
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  116
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 修回日期:  2021-03-18
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回