留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近场动力学在冰区船舶与海洋结构物中的应用进展与展望

薛彦卓 刘仁伟 王庆 倪宝玉

薛彦卓, 刘仁伟, 王庆, 等. 近场动力学在冰区船舶与海洋结构物中的应用进展与展望[J]. 中国舰船研究, 2021, 16(5): 1–16 doi: 10.19693/j.issn.1673-3185.02233
引用本文: 薛彦卓, 刘仁伟, 王庆, 等. 近场动力学在冰区船舶与海洋结构物中的应用进展与展望[J]. 中国舰船研究, 2021, 16(5): 1–16 doi: 10.19693/j.issn.1673-3185.02233
XUE Y Z, LIU R W, WANG Q, et al. Advances in application of peridynamics for ships and marine structures in ice zones[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–16 doi: 10.19693/j.issn.1673-3185.02233
Citation: XUE Y Z, LIU R W, WANG Q, et al. Advances in application of peridynamics for ships and marine structures in ice zones[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–16 doi: 10.19693/j.issn.1673-3185.02233

近场动力学在冰区船舶与海洋结构物中的应用进展与展望

doi: 10.19693/j.issn.1673-3185.02233
基金项目: 国家重点基础研发计划项目(2017YFE0111400);国家自然科学基金资助项目(51979051,51979056,51639004)
详细信息
    作者简介:

    薛彦卓,男,1978年生,博士,教授。研究方向:极地装备,极地船舶。E-mail:xueyanzhuo@hrbeu.edu.cn

    刘仁伟,男,1992年生,博士。研究方向:冰力学数值模型。E-mail:rwliu@hrbeu.edu.cn

    王庆,男,1972年生,博士,教授。研究方向:冰区船舶设计。E-mail:wangqing@hrbeu.edu.cn

    倪宝玉,男,1986年生,博士,教授。研究方向:冰水耦合动力学。E-mail:nibaoyu@hrbeu.edu.cn

    通信作者:

    薛彦卓

  • 中图分类号: U674.21

Advances in application of peridynamics for ships and marine structures in ice zones

  • 摘要: 近场动力学作为一种非局部理论,能够通过键的失效来自发模拟材料的失效、破坏,其在海洋工程领域已取得初步的研究成果,尤其是在冰区船舶与海洋工程领域,更显出了该方法的优越性。为了更好地了解近场动力学在冰区船舶和海洋工程中的应用,对近场动力学在冰区船舶与海洋工程应用中的问题进行梳理,主要包括冰材料本构模型、冰−结构作用模型、冰−水耦合方法、结构物力学模型、水下爆炸破冰应用及结构表面覆冰除冰的应用等。同时,在全面回顾已有研究成果的基础上,分析其特点和面临的挑战,探讨相应的解决思路和未来的研究方向。
  • 图  1  近场动力学与局部理论[25]

    Figure  1.  Peridynamics and local theory[25]

    图  2  近场动力学力密度函数

    Figure  2.  The force density function of peridynamics

    图  3  冰−桨作用过程中桨叶后缘和前缘的压力分布[32]

    Figure  3.  Pressure distribution on the trailing edge and leading edge of blade during propeller-ice interaction[32]

    图  4  竖直结构与层冰作用[36]

    Figure  4.  The simulation of vertical structure-level ice interaction[36]

    图  5  不同颗粒间距冲击结果的比较[34]

    Figure  5.  Comparison of the impact loads with different particle spacings[34]

    图  6  船艏−浮冰作用模拟[38]

    Figure  6.  Simulation of bow-floating ice interaction[38]

    图  7  近场动力学与有限元耦合方法模拟船艏与层冰作用[30]

    Figure  7.  Simulation of ship bow-level ice interaction using PD-FEM coupling method[30]

    图  8  竖直结构−冰作用模拟[35]

    Figure  8.  Simulation of vertical structure-ice interaction[35]

    图  9  流体结构非局部耦合示意图[44]

    Figure  9.  Schematic diagram for non-local coupling of fluid structure[44]

    图  10  冰板在不同时刻的损伤分布[44]

    Figure  10.  The damage distribution for ice plate at different times[44]

    图  11  界面结构粒子在${{\boldsymbol{y}}_{{\rm{s}},a}}$处的相互作用[45]

    Figure  11.  Interactions of the interface structure particle at ${{\boldsymbol{y}}_{{\rm{s}},a}}$[45]

    图  12  实验结果、SPH结果和PD结果间的比较[45]

    Figure  12.  Comparison of results between the experiment, SPH and PD[45]

    图  13  SPH计算域中用虚拟粒子处理的边界条件[46]

    Figure  13.  Boundary condition treatment using repellent ghost particles in SPH computational domain[46]

    图  14  含损伤效应的弹性楔体入水大变形模拟案例[46]

    Figure  14.  Large deformation case of elastic wedge impacting on water involving damage effect[46]

    图  15  PD和FEM方法模拟船用板材变形[52]

    Figure  15.  Simulation of deformation of ship plate using PD and FEM[52]

    图  16  具有T型材的板在冰作用下的变形[55]

    Figure  16.  Deformation of plate with T-section under ice interaction[55]

    图  17  导管架平台在波浪作用下的响应[56]

    Figure  17.  Response of jacket platform withstand wave[56]

    图  18  爆炸载荷作用下冰层破坏模拟图[27]

    Figure  18.  Simulation of ice damage under explosion load[27]

    图  19  冰下爆炸破冰数值模拟结果图[59]

    Figure  19.  Simulation of ice breaking under explosion[59]

    图  20  脉冲载荷作用下铝板表面覆冰破坏模拟[60]

    Figure  20.  Simulation of failure of ice coating on aluminum plate surface under pulse load[60]

  • [1] NI B Y, HAN D F, DI S C, et al. On the development of ice-water-structure interaction[J]. Journal of Hydrodynamics, 2020, 32(4): 629–652. doi: 10.1007/s42241-020-0047-8
    [2] XUE Y Z, LIU R W, LI Z, et al. A review for numerical simulation methods of ship–ice interaction[J]. Ocean Engineering, 2020, 215: 107853. doi: 10.1016/j.oceaneng.2020.107853
    [3] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [4] MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
    [5] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55–129.
    [6] CUNDALL P A. A computer model for simulating progressive large scale movements in blocky rock system[C]//Proceedings of the Symposium of the International Society for Rock Mechanics, Society for Rock Mechanics (ISRM). France: ISRM, 1972.
    [7] CUNDALL P A, STRACK O D L. Discussion: a discrete numerical model for granular assemblies[J]. Géotechnique, 2008, 30(3): 331–336.
    [8] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astrophysical Journal, 1977, 82(12): 1013–1024.
    [9] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389. doi: 10.1093/mnras/181.3.375
    [10] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [11] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity, 2007, 88(2): 151–184. doi: 10.1007/s10659-007-9125-1
    [12] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448–459.

    HUANG D, ZHANG Q, QIAO P Z, et al. A review on peridynamics (PD) method and its applications[J]. Advances in Mechanics, 2010, 40(4): 448–459 (in Chinese).
    [13] 黄丹, 卢广达, 刘一鸣, 等. 混凝土板裂纹扩展的近场动力学建模分析[C]//中国计算力学大会2014暨第三届钱令希计算力学奖颁奖大会论文集. 贵阳: 中国力学学会计算力学专业委员会, 2014: 7.

    HUANG D, LU G D, LIU Y M, et al. Peridynamic modeling and analysis of concrete slab crack propagation[C]//Proceedings of China Computational Mechanics Conference 2014 and The Third Qian Lingxi Computational Mechanics Award Presentation Ceremony. Guiyang: Computational Mechanics Professional Committee of Chinese Society of Mechanics, 2014: 7 (in Chinese).
    [14] 沈峰, 章青, 黄丹, 等. 基于近场动力学理论的混凝土轴拉破坏过程模拟[J]. 计算力学学报, 2013, 30(增刊 1): 79–83.

    SHEN F, ZHANG Q, HUANG D, et al. Damage and failure process of concrete structure under uni-axialtension based on peridynamics modeling[J]. Chinese Journal of Computational Mechanics, 2013, 30(Supp 1): 79–83 (in Chinese).
    [15] 李天一, 章青, 夏晓舟, 等. 考虑混凝土材料非均质特性的近场动力学模型[J]. 应用数学和力学, 2018, 39(8): 913–924.

    LI T Y, ZHANG Q, XIA X Z, et al. A peridynamic model for heterogeneous concrete materials[J]. Applied Mathematics and Mechanics, 2018, 39(8): 913–924 (in Chinese).
    [16] 胡祎乐. 基于近场动力学的FRP层压板建模与分析[D]. 上海: 上海交通大学, 2013.

    HU Y L. Peridynamic modeling and analysis of FRP laminates[D]. Shanghai: Shanghai Jiao Tong University, 2013 (in Chinese).
    [17] 胡祎乐, 余音, 汪海. 基于近场动力学理论的层压板损伤分析方法[J]. 力学学报, 2013, 45(4): 624–628. doi: 10.6052/0459-1879-12-368

    HU Y L, YU Y, WANG H. Damage analysis method for laminates based on peridynamic theory[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 624–628 (in Chinese). doi: 10.6052/0459-1879-12-368
    [18] 孙朝阳, 黄再兴, 王富伟. 纤维增强层合板冲击损伤的近场动力学模拟[C]//无网格粒子类方法进展与应用研讨会论文摘要集. 银川: 中国力学学会, 2016.

    SUN C Y, HUANG Z X, WANG F W. Near field dynamic simulation of impact damage of fiber reinforced laminates[C]//Abstracts of the Symposium on the Progress and Application of Meshless Particle Methods. Yinchuan: China Society of Mechanics, 2016 (in Chinese).
    [19] 王振宇. 基于近场动力学岩石材料的动态断裂与瞬时热传导分析[D]. 郑州: 郑州大学, 2019.

    WANG Z Y. Dynamic fracture and transient heat transfer analysis of rock materials based on peridynamics[D]. Zhengzhou: Zhengzhou University, 2019 (in Chinese).
    [20] 李铮, 郭德平, 周小平, 等. 模拟岩石中裂纹扩展连接的近场动力学方法[J]. 岩土力学, 2019, 40(12): 4711–4721.

    LI Z, GUO D P, ZHOU X P, et al. Numerical simulation of crack propagation and coalescence using peridynamics[J]. Rock and Soil Mechanics, 2019, 40(12): 4711–4721 (in Chinese).
    [21] 王振宇, 程站起. 岩石材料动态破坏的近场动力学方法数值模拟[J]. 力学季刊, 2019, 40(1): 22–31.

    WANG Z Y, CHENG Z Q. Numerical simulation of damage of rock materials based on peridynamics[J]. Chinese Quarterly of Mechanics, 2019, 40(1): 22–31 (in Chinese).
    [22] 朱其志, 倪涛, 赵伦洋, 等. 岩石类材料裂纹扩展贯通的近场动力学方法模拟[J]. 岩石力学与工程学报, 2016, 35(增刊 2): 3507–3515.

    ZHU Q Z, NI T, ZHAO L Y, et al. Simulations of crack propagation in rock-like materials using peridynamic method[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Supp 2): 3507–3515 (in Chinese).
    [23] 周小平, 王允腾, 钱七虎. 爆破荷载作用下岩石破坏特性的“共轭键”基近场动力学数值模拟研究[J]. 中国科学(物理学 力学 天文学), 2020, 50(2): 48–60.

    ZHOU X P, WANG Y T, QIAN Q H. Numerical simulations of failure characteristics of rock materials under blasting loads using the conjugated bond-pair-based peridynamics[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(2): 48–60 (in Chinese).
    [24] SILLING S A, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures, 2005, 83(17/18): 1526–1535.
    [25] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer-Verlag, 2014.
    [26] 刘明昊, 基于近场动力学的海冰破坏数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    LIU M H. Numerical simulation of sea ice damage based on peridynamics[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [27] 王艺, 基于改进的近场动力学水下爆炸破冰数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    WANG Y. Research on numerical simulation of ice breaking by underwater explosion based on improved peridynamics[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
    [28] 赵国良, 基于近场动力学的破冰船冰载荷计算[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    ZHAO G L. Calculation of ice load for icebreaker based on peridynamic[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [29] 卢巍, 海冰弯曲破坏的近场动力学数值计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    LU W. The study of the numerical simulation method of peridynamic based on the bending fracture of sea ice[D]. Harbin: Harbin Engineering University, 2017 (in Chinese).
    [30] 陆锡奎. 基于近场动力学与有限元耦合的破冰船冰载荷计算[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    LU X K. Calculation of ice load for icebreaker based on coupling of peridynamic and finite element method[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
    [31] YE L Y, WANG C, CHANG X, et al. Propeller-ice contact modeling with peridynamics[J]. Ocean Engineering, 2017, 139: 54–64. doi: 10.1016/j.oceaneng.2017.04.037
    [32] YE L Y, GUO C Y, WANG C, et al. Prediction of the dynamic pressure distribution on a propeller blade under ice milling[J]. Ocean Engineering, 2019, 188: 106284. doi: 10.1016/j.oceaneng.2019.106284
    [33] WANG C, XIONG W P, CHANG X, et al. Analysis of variable working conditions for propeller-ice interaction[J]. Ocean Engineering, 2018, 156: 277–293. doi: 10.1016/j.oceaneng.2018.02.026
    [34] XIONG W P, WANG C, WANG C H, et al. Analysis of shadowing effect of propeller-ice milling conditions with peridynamics[J]. Ocean Engineering, 2020, 195: 106591. doi: 10.1016/j.oceaneng.2019.106591
    [35] LIU M H, WANG Q, LU W. Peridynamic simulation of brittle-ice crushed by a vertical structure[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(2): 209–218. doi: 10.1016/j.ijnaoe.2016.10.003
    [36] JIA B, JU L, WANG Q. Numerical simulation of dynamic interaction between ice and wide vertical structure based on peridynamics[J]. Computer Modeling in Engineering & Sciences, 2019, 121(2): 501–522.
    [37] XUE Y Z, LIU R W, LIU Y, et al. Numerical simulations of the ice load of a ship navigating in level ice using peridynamics[J]. Computer Modeling in Engineering & Sciences, 2019, 121(2): 523–550.
    [38] LIU R W, XUE Y Z, LU X K, et al. Simulation of ship navigation in ice rubble based on peridynamics[J]. Ocean Engineering, 2018, 148: 286–298. doi: 10.1016/j.oceaneng.2017.11.034
    [39] 贾宾, 王庆, 李文颉, 等. 海冰与柱状结构作用的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2020, 41(1): 52–59.

    JIA B, WANG Q, LI W J, et al. Peridynamic simulation of the interaction between sea ice and cylindrical structure[J]. Journal of Harbin Engineering University, 2020, 41(1): 52–59 (in Chinese).
    [40] 熊伟鹏, 王超, 傅江妍, 等. 冰球冲击试验的近场动力学方法数值模拟[J]. 振动与冲击, 2020, 39(7): 148–155.

    XIONG W P, WANG C, FU J Y, et al. Numerical simulation of ice sphere impact test by peridynamics method[J]. Journal of Vibration and Shock, 2020, 39(7): 148–155 (in Chinese).
    [41] 张磊, 郎进花, 王松岭. 流固耦合问题数值模拟算法研究进展[J]. 热力发电, 2015, 44(1): 1–7. doi: 10.3969/j.issn.1002-3364.2015.01.001

    ZHANG L, LANG J H, WANG S L. Recent development of numerical simulation methods for fluid-structure interaction[J]. Thermal Power Generation, 2015, 44(1): 1–7 (in Chinese). doi: 10.3969/j.issn.1002-3364.2015.01.001
    [42] 陈锋, 王春江, 周岱. 流固耦合理论与算法评述[J]. 空间结构, 2012, 18(4): 55–63.

    CHEN F, WANG C J, ZHOU D. Review of theory and numerical methods of fluid-structure interaction[J]. Spatial Structures, 2012, 18(4): 55–63 (in Chinese).
    [43] 钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 14(1): 3–15.

    QIAN R J, DONG S L, YUAN X F. Advances in research on fluid-structure interaction theory[J]. Spatial Structures, 2008, 14(1): 3–15 (in Chinese).
    [44] LIU R W, YAN J L, LI S F. Modeling and simulation of ice-water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics[J]. Computational Particle Mechanics, 2020, 7(2): 241–255. doi: 10.1007/s40571-019-00268-7
    [45] GAO Y, OTERKUS S. Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator[J]. Engineering Analysis with Boundary Elements, 2020, 121: 126–142. doi: 10.1016/j.enganabound.2020.09.012
    [46] SUN W K, ZHANG L W, LIEW K M. A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling fluid–structure interaction problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371: 113298. doi: 10.1016/j.cma.2020.113298
    [47] FAN H F, LI S F. A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 349–381. doi: 10.1016/j.cma.2017.01.026
    [48] REN B, FAN H F, BERGEL G L, et al. A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves[J]. Computational Mechanics, 2015, 55(2): 287–302. doi: 10.1007/s00466-014-1101-6
    [49] CHOWDHURY S R, ROY P, ROY D, et al. A peridynamic theory for linear elastic shells[J]. International Journal of Solids and Structures, 2016, 84: 110–132. doi: 10.1016/j.ijsolstr.2016.01.019
    [50] ZHANG Q, LI S F, ZHANG A M, et al. A peridynamic reissner-mindlin shell theory[J]. International Journal for Numerical Methods in Engineering, 2021, 122(1): 122–147. doi: 10.1002/nme.6527
    [51] O'GRADY J, FOSTER J. Peridynamic plates and flat shells: a non-ordinary, state-based model[J]. International Journal of Solids and Structures, 2014, 51(25/26): 4572–4579.
    [52] NGUYEN C T, OTERKUS S. Peridynamics for the thermomechanical behavior of shell structures[J]. Engineering Fracture Mechanics, 2019, 219: 106623. doi: 10.1016/j.engfracmech.2019.106623
    [53] GAO Y, OTERKUS S. Peridynamic analysis of marine composites under shock loads by considering thermomechanical coupling effects[J]. Journal of Marine Science and Engineering, 2018, 6(2): 38. doi: 10.3390/jmse6020038
    [54] NGUYEN C T, OTERKUS S. Investigating the effect of brittle crack propagation on the strength of ship structures by using peridynamics[J]. Ocean Engineering, 2020, 209: 107472. doi: 10.1016/j.oceaneng.2020.107472
    [55] 王庆, 王艺, 袁利豪, 等. 脆性冰与加筋板接触的近场动力学模拟[J]. 船舶力学, 2018, 22(3): 339–352. doi: 10.3969/j.issn.1007-7294.2018.03.008

    WANG Q, WANG Y, YUAN L H, et al. Simulation of brittle-ice contacting with stiffened plate with peridynamics[J]. Journal of Ship Mechanics, 2018, 22(3): 339–352 (in Chinese). doi: 10.3969/j.issn.1007-7294.2018.03.008
    [56] NGUYEN C T, OTERKUS S. Peridynamics formulation for beam structures to predict damage in offshore structures[J]. Ocean Engineering, 2019, 173: 244–267. doi: 10.1016/j.oceaneng.2018.12.047
    [57] LAI X, LIU L S, LI S F, et al. A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials[J]. International Journal of Impact Engineering, 2018, 111: 130–146. doi: 10.1016/j.ijimpeng.2017.08.008
    [58] WANG Q, WANG Y, ZAN Y F, et al. Peridynamics simulation of the fragmentation of ice cover by blast loads of an underwater explosion[J]. Journal of Marine Science and Technology, 2017, 23(1): 52–66.
    [59] 程文霞. 基于近场动力学的冰下爆炸破冰数值模拟研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    CHENG W X. Research on numerical simulation of ice breaking by under ice explosion based on peridynamics[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
    [60] SONG Y, LIU R W, LI S F, et al. Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures[J]. Meccanica, 2020, 55(4): 961–976. doi: 10.1007/s11012-019-01106-z
    [61] SONG Y, LI S F, ZHANG S. Peridynamic modeling and simulation of thermo-mechanical de-icing process with modified ice failure criterion[J]. Defence Technology, 2021, 17(1): 15–35. doi: 10.1016/j.dt.2020.04.001
  • 加载中
图(21)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-21
  • 修回日期:  2021-02-13
  • 网络出版日期:  2021-07-05

目录

    /

    返回文章
    返回