Numerical analysis on bending-torsional coupling stiffness characteristics of composite propeller
-
摘要:
目的 复合材料螺旋桨的弯扭耦合变形程度反映了桨叶的刚度特性,而桨叶刚度特性又与其水动力性能存在一定的相关性,将从刚度的角度对复合材料螺旋桨的纤维铺层进行优化设计。 方法 首先,以DTMB 4383复合材料螺旋桨为研究对象,基于复合材料螺旋桨流固耦合自迭代算法,构建桨叶弯扭刚度数值计算方法;然后,分别在桨叶铺设单向碳纤维布或正交碳纤维布这2种情况下,对不同铺层方案桨叶的弯扭刚度进行数值计算,并研究桨叶的弯扭刚度特性以及其与水动力性能之间的对应规律。 结果 数值计算结果表明,复合材料螺旋桨单桨叶推力系数及其推力系数差值与桨叶刚度之间呈现出较为同步的变化规律;在主方向弹性模量相同的情况下,正交碳纤维布铺设的复合材料螺旋桨的最小推力系数差值大于单向碳纤维布铺设的复合材料螺旋桨;当材料的弹性模量降低时,桨叶的刚度随之减小,且复合材料螺旋桨单桨叶推力系数及其推力系数差值也会随之减小;当桨叶的刚度较小时,复合材料螺旋桨能够更好地发挥自适应流场的优势,经弯扭耦合能产生更大的螺距变形,从而在高、低伴流区中产生较金属螺旋桨更小的周期性推力脉动。 结论 所得结果可指导复合材料螺旋桨改善船艉水动力性能的优化设计。 Abstract:Objectives The bending-torsional coupling deformation degree of a composite propeller reflects the stiffness characteristics of the blade, which in turn have a certain correlation with its hydrodynamic performance. A fiber layer design for a composite propeller is optimized from the perspective of stiffness. Methods Taking a DTMB 4383 composite propeller as the research object, based on the self-iterative algorithm of the fluid-structure interaction of the composite propeller, a numerical calculation method for the bending stiffness and torsional stiffness of the blade is constructed. The stiffness of the blade under different ply schemes is numerically calculated under the conditions of unidirectional carbon fiber cloth or orthogonal carbon fiber cloth laid on the blade, and the bending-torsional stiffness characteristics of the blade and its corresponding laws with hydrodynamic performance are studied. Results The numerical calculation results show that the thrust coefficient of the single blade, the difference value of the thrust coefficient of the composite propeller, and the stiffness of the blade exhibit relatively synchronous change laws; under the same elastic modulus in the main direction, the minimum difference value of the thrust coefficient of the composite propeller with orthogonal carbon fiber cloth is greater than that with unidirectional carbon fiber cloth; when the elastic modulus of the material decreases, the stiffness of the blade decreases, and the thrust coefficient of the single blade and the difference value of the thrust coefficient of the composite propeller also decreases; when the stiffness of the blade is small, the composite propeller can give fuller play to the advantages of the adaptive flow field, and the bending-torsional coupling produces larger pitch deformation, resulting in a smaller periodic thrust ripple than that of a metal propeller in the high and low flow areas. Conclusions The results of this paper can guide the optimization design of composite propellers by improving the hydrodynamic performance of the stern. -
表 1 5个桨型的敞水性能对比
Table 1. Comparison of open water performance of five propellers
J=0.5 J=0.7 J=0.833 J=0.9 J=1.0 KT 10KQ KT 10KQ K T 10KQ KT 10KQ KT 10KQ DTMB 4118计算值 0.277 1 0.455 2 0.203 6 0.361 2 0.151 8 0.292 2 0.124 6 0.255 2 0.082 6 0.197 1 DTMB 4118试验值 0.287 6 0.481 4 0.200 0 0.360 0 − − 0.123 3 0.244 4 0.076 7 0.177 5 DTMB 4119计算值 0.274 9 0.438 7 0.200 0 0.348 4 0.146 9 0.278 7 0.119 0 0.240 3 0.075 9 0.178 7 DTMB 4119试验值 0.285 0 0.477 0 0.200 0 0.360 0 0.146 0 0.280 0 0.120 0 0.239 0 − − DTMB 4381计算值 0.372 5 0.666 8 0.292 2 0.560 5 0.234 3 0.478 8 0.203 7 0.433 9 0.155 8 0.362 0 DTMB 4381试验值 0.385 0 0.665 0 0.298 0 0.550 0 − − 0.205 0 0.412 0 0.152 0 0.335 0 DTMB 4382计算值 0.392 1 0.668 2 0.306 1 0.555 8 0.246 3 0.472 2 0.215 1 0.427 0 0.167 2 0.355 1 DTMB 4382试验值 0.394 0 0.680 0 0.310 0 0.565 0 − − 0.215 0 0.435 0 0.165 0 0.360 0 DTMB 4383计算值 0.398 9 0.695 6 0.309 5 0.587 5 0.249 1 0.508 5 0.218 1 0.466 0 0.170 9 0.398 8 DTMB 4383试验值 0.385 0 0.662 0 0.310 0 0.570 0 − − 0.218 0 0.465 0 0.183 0 0.406 0 表 2 复合材料螺旋桨收敛过程
Table 2. Convergence process of composite propeller
迭代次数 桨叶所有网格点总位移/mm J=0.5 J=0.6 J=0.7 J=0.8 J=0.9 J=1.0 0 353.748 310.279 267.339 225.281 183.683 142.428 1 355.414 312.001 268.646 225.787 183.060 140.397 2 355.676 312.230 268.844 225.951 183.191 140.493 3 355.743 312.290 268.895 225.993 183.224 140.518 4 355.760 312.304 268.908 226.004 183.232 140.525 表 3 材料1的属性
Table 3. The property of material 1
参数 数值 E1 /GPa 165 E2,E3 /GPa 8.28 G12,G13 /GPa 4.27 G23 /GPa 2.8 ν12,ν13 0.33 ν23 0.48 表 4 材料2的属性
Table 4. The property of material 2
参数 数值 E1 /GPa 82.5 E2,E3 /GPa 4.14 G12,G13 /GPa 2.135 G23 /GPa 1.4 ν12,ν13 0.33 ν23 0.48 表 5 材料3的属性
Table 5. The property of material 3
参数 数值 E1,E2/GPa 165 E3/GPa 8.28 G12/GPa 4.27 G13,G23/GPa 2.8 ν12 0.33 ν13,ν23 0.48 表 6 材料4的属性
Table 6. The property of material 4
参数 数值 E1,E2/GPa 82.5 E3/GPa 4.14 G12/GPa 2.135 G13,G23/GPa 1.4 ν12 0.33 ν13,ν23 0.48 -
[1] 牛磊, 孙鹏文, 曹婧华, 等. 基于一阶响应面法的铺层参数对叶片性能的耦合影响分析[J]. 内蒙古工业大学学报 (自然科学版), 2018, 37(2): 119–124.NIU L, SUN P W, CAO J H, et al. Coupling effect analysis of laminating parameters on blade property based on the first-order response surface method[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2018, 37(2): 119–124 (in Chinese). [2] 吴鹏辉, 孙鹏文. 铺层参数对风力机叶片刚度的耦合影响分析[J]. 内蒙古工业大学学报(自然科学版), 2019, 38(2): 110–114.WU P H, SUN P W. Coupling influence analysis of ply parameters to the stiffness of wind turbine blade[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2019, 38(2): 110–114 (in Chinese). [3] 洪毅. 高性能复合材料螺旋桨的结构设计及水弹性优化[D]. 哈尔滨: 哈尔滨工业大学, 2011.HONG Y. Structure design and hydroelastic optimization of high performance composite propeller[D]. Harbin: Harbin Engineering University, 2011 (in Chinese). [4] 王子文. 大型风力机叶片弯扭耦合特性研究及轻量化设计[D]. 武汉: 华中科技大学, 2019.WANG Z W. Research on bend-twist coupling characteristics and lightweight design of large wind turbine blade[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). [5] 贺伟. 船用复合材料螺旋桨水弹性分析与设计方法研究[D]. 武汉: 武汉理工大学, 2015.HE W. Research on hydroelastic analysis and design of composite marine propellers[D]. Wuhan: Wuhan University of Technology, 2015 (in Chinese). [6] 苏军, 安中彦, 于云飞, 等. 发动机叶片扭转和弯曲变形同步测量新方法[J]. 实验力学, 2017, 32(2): 279–285. doi: 10.7520/1001-4888-16-017SU J, AN Z Y, YU Y F, et al. A new synchronous measurement method for torsion and bending deformation of engine blade[J]. Journal of Experimental Mechanics, 2017, 32(2): 279–285 (in Chinese). doi: 10.7520/1001-4888-16-017 [7] 叶礼裕, 王超, 孙帅, 等. 基于悬臂梁法和面元法耦合的桨叶应力分布预报[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(5): 968–973.YE L Y, WANG C, SUN S, et al. Prediction of blade stress distribution based on cantilever beam method and penal method[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(5): 968–973 (in Chinese). [8] 谭廷寿. 非均匀流场中螺旋桨性能预报和理论设计研究[D]. 武汉: 武汉理工大学, 2003.TAN T S. Performance prediction and theoretical design research on propeller in non-uniform flow[D]. Wuhan: Wuhan University of Technology, 2003 (in Chinese). [9] 徐欣伟. 螺旋桨的设计及性能预报与软件实现[D]. 武汉: 华中科技大学, 2011.XU X W. Design and prediction performance of propeller and its realization in software[D]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese). [10] YOUNG Y L. Fluid–structure interaction analysis of flexible composite marine propellers[J]. Journal of Fluids and Structures, 2008, 24(6): 799–818. doi: 10.1016/j.jfluidstructs.2007.12.010 [11] YOUNG Y L, BAKER J W, MOTLEY M R. Reliability-based design and optimization of adaptive marine structures[J]. Composite Structures, 2010, 92(2): 244–253. doi: 10.1016/j.compstruct.2009.07.024 [12] 李坚波, 王永生, 孙存楼. 可调距螺旋桨转叶力矩的数值计算[J]. 中国水运(下半月), 2008, 8(12): 12–14.LI J B, WANG Y S, SUN C L. Numerical calculation of spindle torque of controllable pitch propeller[J]. China Water Transport (Second half of the month), 2008, 8(12): 12–14 (in Chinese). [13] DUCOIN A, YOUNG Y L. Hydroelastic response and stability of a hydrofoil in viscous flow[J]. Journal of Fluids and Structures, 2013, 38: 40–57. doi: 10.1016/j.jfluidstructs.2012.12.011 [14] HUANG Z, XIONG Y, XU Y. The simulation of deformation and vibration characteristics of a flexible hydrofoil based on static and transient FSI[J]. Ocean Engineering, 2019, 182: 61–74. doi: 10.1016/j.oceaneng.2019.04.028 [15] 李汝鹏, 陈磊, 刘学术, 等. 基于渐进损伤理论的复合材料开孔拉伸失效分析[J]. 航空材料学报, 2018, 38(5): 138–146. doi: 10.11868/j.issn.1005-5053.2017.000133LI R P, CHEN L, LIU X S, et al. Progressive damage based failure analysis of open-hole composite laminates under tension[J]. Journal of Aeronautical Materials, 2018, 38(5): 138–146 (in Chinese). doi: 10.11868/j.issn.1005-5053.2017.000133 -
ZG2224_en.pdf
-