留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶舷侧与小型冰山碰撞数值模拟分析

杨碧野 黄志刚 刘宁 孙哲 张桂勇

杨碧野, 黄志刚, 刘宁, 等. 船舶舷侧与小型冰山碰撞数值模拟分析[J]. 中国舰船研究, 2021, 16(5): 1–9 doi: 10.19693/j.issn.1673-3185.02220
引用本文: 杨碧野, 黄志刚, 刘宁, 等. 船舶舷侧与小型冰山碰撞数值模拟分析[J]. 中国舰船研究, 2021, 16(5): 1–9 doi: 10.19693/j.issn.1673-3185.02220
YANG B Y, HUANG Z G, LIU N, et al. Numerical simulation analysis of the collision between ship side and small iceberg[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–9 doi: 10.19693/j.issn.1673-3185.02220
Citation: YANG B Y, HUANG Z G, LIU N, et al. Numerical simulation analysis of the collision between ship side and small iceberg[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–9 doi: 10.19693/j.issn.1673-3185.02220

船舶舷侧与小型冰山碰撞数值模拟分析

doi: 10.19693/j.issn.1673-3185.02220
基金项目: 国家自然科学基金资助项目(51639003,51809035);工信部高技术船舶科研资助项目(2017-614);中央高校基本科研业务费专项资金资助项目(DUT20TD108,DUT20LAB308);辽宁省兴辽英才计划资助项目(XLYC1908027)
详细信息
    作者简介:

    杨碧野,男,1992年生,博士生。研究方向:船舶冰阻力,冰载荷。E-mail:dayedut123@163.com

    孙哲,男,1986年生,博士,讲师。研究方向:船舶水弹性,极地冰阻力。E-mail: zsun@dlut.edu.cn

    张桂勇,男,1978年生,博士,教授,博士生导师

    通信作者:

    张桂勇

  • 中图分类号: U661.4

Numerical simulation analysis of the collision between ship side and small iceberg

  • 摘要:   目的  船舶在极地航行时不可避免地会与海冰发生碰撞。为研究船舶舷侧结构与小型冰山的碰撞问题,  方法  基于罚函数法和任意拉格朗日−欧拉(ALE)方法建立非线性有限元分析模型,针对某油船的船体双层舷侧结构与球形冰山的相互作用过程进行数值模拟,考虑船体结构的变形、海冰的破坏以及碰撞过程中的水动力作用,分析不同碰撞角度对碰撞速度、碰撞力以及结构能量吸收的影响。  结果  结果表明:该数值模型可以较为充分地模拟舷侧结构与冰山的相互作用过程,在碰撞过程中,其碰撞力的峰值与碰撞角度及冰山是否破碎情况有关;碰撞力峰值随着碰撞角度的增大而增大,相对于其他角度的碰撞,在冰山的垂直碰撞情况下,流体对于冰山的速度有着较为明显的衰减作用;在舷侧各结构构件中,舷侧外板为碰撞过程中主要的吸能构件,且当冰山发生破碎时,因在破碎过程中会消耗能量,结构吸能会相对减少,故碰撞力的增幅会小于未破碎情况。  结论  为保证极地航行船舶的安全,可以适当增加舷侧结构强度,并在遭遇冰山时避免大角度的碰撞。
  • 图  1  耦合算法示意图

    Figure  1.  Schematic diagram of coupling algorithm

    图  2  球形冰与刚性板的碰撞示意图

    Figure  2.  Schematic diagram of the collision between spherical ice and rigid plate

    图  3  压力−面积曲线

    Figure  3.  Curves of pressure with nominal contact area

    图  4  舷侧模型

    Figure  4.  Model of the side structure

    图  5  整体计算域模型

    Figure  5.  The model of whole computational domain

    图  6  碰撞角度俯视图

    Figure  6.  Top view of collision

    图  7  α = 60°时不同时刻舷侧−冰山碰撞现象

    Figure  7.  Collision phenomenon between side structure and iceberg with α = 60° at different time

    图  8  α = 60°时的冰山速度变化情况

    Figure  8.  Velocity of iceberg with α = 60°

    图  9  不同碰撞角度下的冰山速度幅值变化

    Figure  9.  Velocity amplitude of iceberg with different collision angles

    图  10  α = 90°时舷侧不同时刻的等效应力图

    Figure  10.  Equivalent stress contours of the side structure with α = 90° at different times

    图  11  垂直碰撞过程中不同时刻的冰山应力图

    Figure  11.  Stress contours of the iceberg at different times during vertical collision

    图  12  不同工况下的碰撞力曲线

    Figure  12.  Curves of collision force in different cases

    图  13  不同碰撞角度下的碰撞力峰值

    Figure  13.  Peak collision force with different collision angles

    图  14  不同碰撞角度下船体结构的能量吸收

    Figure  14.  Energy absorption of ship structure at different collision angles

    表  1  冰山的主要材料参数

    Table  1.   Main material parameters of iceberg

    参数 数值
    密度/(kg·m−3) 900
    弹性模量/Pa 9.5×109
    泊松比 0.3
    屈服应力/Pa 6.9×106
    剪切模量/Pa 6.7×109
    塑性失效应变 0.001[16]
    下载: 导出CSV

    表  2  舷侧板的厚度

    Table  2.   Thickness of the side shell

    区域参数数值
    A舷侧外板厚/mm32
    B舷侧内板厚/mm24
    C肋板厚/mm14
    D纵桁材厚/mm10
    E舷侧内板厚/mm18
    其余区域底部加强构件等的厚度/mm16
    下载: 导出CSV

    表  3  舷侧板的主要材料参数

    Table  3.   Main material parameters of the side shell

    参数 数值
    密度/(kg·m−3) 7 850
    弹性模量/Pa 2.01×1011
    泊松比 0.3
    屈服应力/Pa 2.35×108
    剪切模量/Pa 7.73×1010
    塑性失效应变 0.2[18]
    下载: 导出CSV

    表  4  模型网格参数

    Table  4.   Parameters of the model mesh

    区域单元类型单元尺寸/m网格数量
    船体舷侧4 node-Shell0.3/0.2518 193
    冰山8 node-Solid0.1516 384
    水域Solid ALE0.3203 500
    空气域Solid ALE0.3258 500
    下载: 导出CSV
  • [1] 朱英富, 刘祖源, 解德, 等. 极地船舶核心关键基础技术现状及我国发展对策[J]. 中国科学基金, 2015, 29(3): 178–186.

    ZHU Y F, LIU Z Y, XIE D, et al. Advancements of the core fundamental technologies and strategies of China regarding the research and development on polar ships[J]. Bulletin of National Natural Science Foundation of China, 2015, 29(3): 178–186 (in Chinese).
    [2] HILL B T. Ship collisions with iceberg database. Report to PERD: trends and analysis: TR-2005-17[R]. St. John's, NL: Institute for Ocean Technology, National Research Council, 2005.
    [3] DNV. Ice collision scenario: 2006-0672[R]. Norway: Det Norske Veritas, 2006.
    [4] CAMMAERT A B, TSINKER G B. Impact of large ice floes and icebergs on marine structures[C]//Proceedings of the 6th International Conference on Port and Ocean Engineering Under Arctic Conditions. Quebec City, Canada, 1981.
    [5] LIU Z H, AMDAHL J. A new formulation of the impact mechanics of ship collisions and its application to a ship–iceberg collision[J]. Marine Structures, 2010, 23(3): 360–384. doi: 10.1016/j.marstruc.2010.05.003
    [6] TIMCO G W. Isolated ice floe impacts[J]. Cold Regions Science and Technology, 2011, 68(1/2): 35–48.
    [7] GAGNON R E. A numerical model of ice crushing using a foam analogue[J]. Cold Regions Science and Technology, 2011, 65(3): 335–350. doi: 10.1016/j.coldregions.2010.11.004
    [8] LIU Z H, AMDAHL J, LØSET S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, 2011, 65(3): 326–334. doi: 10.1016/j.coldregions.2010.10.005
    [9] GAO Y, HU Z Q, WANG J. Sensitivity analysis for iceberg geometry shape in ship-iceberg collision in view of different material models[J]. Mathematical Problems in Engineering, 2014, 2014: 414362.
    [10] 薛彦卓, 倪宝玉. 极地船舶与浮体结构物力学问题研究综述[J]. 哈尔滨工程大学学报, 2016, 37(1): 36–40.

    XUE Y Z, NI B Y. Review of mechanical issues for polar region ships and floating structures[J]. Journal of Harbin Engineering University, 2016, 37(1): 36–40 (in Chinese).
    [11] 王庆凯, 雷瑞波, 李志军. 融冰期北极海冰单轴压缩强度的试验研究[J]. 哈尔滨工程大学学报, 2018, 39(10): 1589–1597.

    WANG Q K, LEI R B, LI Z J. Experimental study on the uniaxial compressive strength of the Arctic sea ice during melt season[J]. Journal of Harbin Engineering University, 2018, 39(10): 1589–1597 (in Chinese).
    [12] 陈晓东, 王安良, 季顺迎. 海冰在单轴压缩下的韧-脆转化机理及破坏模式[J]. 中国科学: 物理学 力学 天文学, 2018, 48(12): 124601.

    CHEN X D, WANG A L, JI S Y. The study on brittle-ductile transition mechanism and failure mode of sea ice under uniaxial compression[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2018, 48(12): 124601 (in Chinese).
    [13] ZONG R. Finite element analysis of ship-ice collision using LS-DYNA[D]. St. John's, NL: Memorial University of Newfoundland, 2012.
    [14] 张健, 张淼溶, 万正权, 等. 冰材料模型在船−冰碰撞结构响应数值仿真中的应用研究[J]. 中国造船, 2013, 54(4): 100–108. doi: 10.3969/j.issn.1000-4882.2013.04.012

    ZHANG J, ZHANG M R, WAN Z Q, et al. Research on ice material model applied in numerical simulation of ship structure response under iceberg collision[J]. Shipbuilding of China, 2013, 54(4): 100–108 (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.04.012
    [15] JONES S J. A review of the strength of iceberg and other freshwater ice and the effect of temperature[J]. Cold Regions Science and Technology, 2007, 47(3): 256–262. doi: 10.1016/j.coldregions.2006.10.002
    [16] JONES S J. Comparison of the strength of iceberg and other freshwater ice and the effect of temperature: TR-2006-07[R]. St. John's, NL: Institute for Ocean Technology, National Research Council, 2006.
    [17] KIM E, STORHEIM M, AMDAHL J, et al. Laboratory experiments on shared-energy collisions between freshwater ice blocks and a floating steel structure[J]. Ships and Offshore Structures, 2017, 12(4): 530–544. doi: 10.1080/17445302.2016.1183270
    [18] 许长江, 杨飏. 船舶−小型冰山碰撞响应计算及损伤分析[J]. 船海工程, 2017, 46(4): 20–24, 29.

    XU C J, YANG Y. Response calculation and damage analysis of ship-small iceberg collision[J]. Ship & Ocean Engineering, 2017, 46(4): 20–24, 29 (in Chinese).
    [19] LSTC. LS-DYNA user's manual, Version 971 R5[M]. USA: Livermore Soft Technology Corp, 2011.
    [20] 张健, 万正权, 黄进浩, 等. 舷侧板架与冰体碰撞数值仿真及模型试验研究[J]. 船舶力学, 2014, 18(4): 424–433. doi: 10.3969/j.issn.1007-7294.2014.04.010

    ZHANG J, WAN Z Q, HUANG J H, et al. Research on numerical simulation and model test of collision between side grillage and icebergs[J]. Journal of Ship Mechanics, 2014, 18(4): 424–433 (in Chinese). doi: 10.3969/j.issn.1007-7294.2014.04.010
    [21] KIM E, STORHEIM M, POLACH R V B U, et al. Design and modelling of accidental ship collisions with ice masses at laboratory-scale[C]//Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: ASME, 2012.
    [22] SONG M, KIM E, AMDAHL J, et al. A comparative analysis of the fluid-structure interaction method and the constant added mass method for ice-structure collisions[J]. Marine Structures, 2016, 49: 58–75. doi: 10.1016/j.marstruc.2016.05.005
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-12
  • 修回日期:  2021-03-29
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回