留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮冰碰撞下船体板塑性动力响应预测方法

蔡伟 朱凌 毕璐泽

蔡伟, 朱凌, 毕璐泽. 浮冰碰撞下船体板塑性动力响应预测方法[J]. 中国舰船研究, 2021, 16(5): 1–6 doi: 10.19693/j.issn.1673-3185.02217
引用本文: 蔡伟, 朱凌, 毕璐泽. 浮冰碰撞下船体板塑性动力响应预测方法[J]. 中国舰船研究, 2021, 16(5): 1–6 doi: 10.19693/j.issn.1673-3185.02217
CAI W, ZHU L, BI L Z. Prediction method for plastic dynamic response of ship plate subjected to ice floe impact[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–6 doi: 10.19693/j.issn.1673-3185.02217
Citation: CAI W, ZHU L, BI L Z. Prediction method for plastic dynamic response of ship plate subjected to ice floe impact[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–6 doi: 10.19693/j.issn.1673-3185.02217

浮冰碰撞下船体板塑性动力响应预测方法

doi: 10.19693/j.issn.1673-3185.02217
基金项目: 国家自然科学基金资助项目(11972269);中央高校基本科研业务费资助项目(2019YB013)
详细信息
    作者简介:

    蔡伟,男,1996年生,博士生。研究方向:冰区船舶与海洋结构安全性研究。E-mail:Caiwei199696@163.com

    朱凌,男,1962年生,博士,教授,博士生导师。研究方向:冰区船舶与海洋结构安全性与完整性研究。E-mail:lingzhu@whut.edu.cn

    通信作者:

    朱凌

  • 中图分类号: U661.4

Prediction method for plastic dynamic response of ship plate subjected to ice floe impact

  • 摘要:   目的  极地船舶在航行过程中会遭受浮冰碰撞载荷作用,在一些极端冰碰载荷作用下,船体板会出现永久塑性变形,严重影响船舶的安全性能和工作性能,极大地增加了极地船舶的维修成本。  方法  为此,针对简化的浮冰−船体板碰撞模型,基于冰体破坏能量分析方法以及船体板塑性动力响应刚塑性理论方法,探讨冰体与船体板碰撞过程中的碰撞能量分享机制,提出冰体碰撞下船体板的塑性动力响应解析式,并将解析式计算结果与数值计算结果进行对比。  结果  验证结果显示,所提解析方法可靠,可以快速预报冰体碰撞下船体板的塑性变形值以及碰撞力。  结论  所做研究具有较大的工程应用价值。
  • 图  1  冰体/船体板的碰撞力−位移曲线

    Figure  1.  Force-displacement curves of ice and ship plate

    图  2  楔形冰几何形状

    Figure  2.  The geometry of ice wedge

    图  3  船体板塑性变形模态

    Figure  3.  Plastic deformation mode of ship plate

    图  4  矩形截面的屈服条件[18]

    Figure  4.  Yield condition of rectangular section[18]

    图  5  冰体碰撞过程中的平均压强与接触面积的数值计算结果

    Figure  5.  Numerical results of average pressure and contact area in the ice impact process

    图  6  有限元计算方法与解析方法结果的对比

    Figure  6.  Comparison of results between finite element method and analytical method

    表  1  浮冰与船体板碰撞计算算例

    Table  1.   Calculation cases of ice floe and ship plate impact

    算例船体板尺寸
    (L×B×H) /mm
    浮冰前端
    夹角/(°)
    浮冰
    厚度/m
    船体板
    材料类型
    浮冰质量
    m0 /kg
    浮冰碰撞
    速度V0
    /(m·s−1)
    1900×450×10900.225刚体1 5003.5
    2900×450×10900.225弹塑性1 5002.0
    3900×450×10900.225弹塑性1 5002.5
    4900×450×10900.225弹塑性1 5003.0
    5900×450×10900.225弹塑性1 5003.5
    6900×450×10900.225弹塑性1 5004.0
    下载: 导出CSV
  • [1] GAGNON R E, DERRADJI-AOUAT A. First results of numerical simulations of bergy bit collisions with the CCGS Terry Fox icebreaker[C]//Proceedings of the 18th IAHR International Symposium on Ice. Sapporo, Japan: IAHR, 2006: 9-16.
    [2] RITCH R, FREDERKING R, JOHNSTON M, et al. Local ice pressures measured on a strain gauge panel during the CCGS Terry Fox bergy bit impact study[J]. Cold Regions Science and Technology, 2008, 52(1): 29–49. doi: 10.1016/j.coldregions.2007.04.017
    [3] KIM E, STORHEIM M, AMDAHL J, et al. Laboratory experiments on shared-energy collisions between freshwater ice blocks and a floating steel structure[J]. Ships and Offshore Structures, 2017, 12(4): 530–544. doi: 10.1080/17445302.2016.1183270
    [4] 闫孟娇, 朱凌. 浮冰碰撞载荷作用下船体板结构动力响应研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(2): 268–272.

    YAN M J, ZHU L. Dynamic analysis of ship plates under ice floes impact[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(2): 268–272 (in Chinese).
    [5] 蔡伟, 朱凌. 冰碰载荷下船体板弹塑性动力响应分析[J]. 中国舰船研究, 2020, 15(6): 155–161. doi: 10.19693/j.issn.1673-3185.01804

    CAI W, ZHU L. Elastic-plastic responses of ship plates under ice impact loading[J]. Chinese Journal of Ship Research, 2020, 15(6): 155–161 (in Chinese). doi: 10.19693/j.issn.1673-3185.01804
    [6] LIU Z H, AMDAHL J, LOSET S. Plasticity based material modelling of ice and its application to ship-iceberg impacts[J]. Cold Regions Science and Technology, 2011, 65(3): 326–334. doi: 10.1016/j.coldregions.2010.10.005
    [7] 张健, 张淼溶, 万正权, 等. 冰材料模型在船-冰碰撞结构响应数值仿真中的应用研究[J]. 中国造船, 2013, 54(4): 100–108. doi: 10.3969/j.issn.1000-4882.2013.04.012

    ZHANG J, ZHANG M R, WAN Z Q, et al. Research on ice material model applied in numerical simulation of ship structure response under iceberg collision[J]. Shipbuilding of China, 2013, 54(4): 100–108 (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.04.012
    [8] ZHU L, QIU X M, CHEN M S, et al. Simplified Ship-ice collision numerical simulations[C]//The 26th International Ocean and Polar Engineering Conference. Busan: International Society of Offshore and Polar Engineers, 2016.
    [9] ZHU L, CAI W, CHEN M S, et al. Dynamic analysis of ship plates under repeated ice floes impacts based on a simplified ship-ice collision model[C]//The 28th International Ocean and Polar Engineering Conference. Sapporo, Japan: International Society of Offshore and Polar Engineers, 2018.
    [10] CAI W, ZHU L, YU T X, et al. Numerical simulations for plates under ice impact based on a concrete constitutive ice model[J]. International Journal of Impact Engineering, 2020, 143: 103594. doi: 10.1016/j.ijimpeng.2020.103594
    [11] POPOV Y N, FADEYEV O V, KHEISIN D E, et al. Strength of ships sailing in ice[R]. Virginia: Army Foreign Science and Technology Center Charlottesville VA, 1969.
    [12] DALEY C. Energy based ice collision forces[C]//Proceedings of the 15th International Conference on Port and Ocean Engineering under Arctic Conditions. Espoo, Finland, 1999: 674-686.
    [13] DALEY C G. Oblique ice collision loads on ships based on energy methods[J]. Oceanic Engineering International, 2001, 5(2): 67–72.
    [14] ZHU L, FAULKNER D, ATKINS A G. The impact of rectangular plates made from strain-rate sensitive materials[J]. International Journal of Impact Engineering, 1994, 15(3): 245–255. doi: 10.1016/S0734-743X(05)80016-8
    [15] ZHU L, FAULKNER D. Damage estimate for plating of ships and platforms under repeated impacts[J]. Marine Structure, 1996, 9(7): 697–720. doi: 10.1016/0951-8339(95)00018-6
    [16] ZHU L, SHI S Y, JONES N. Dynamic response of stiffened plates under repeated impacts[J]. International Journal of Impact Engineering, 2018, 117: 113–122. doi: 10.1016/j.ijimpeng.2018.03.006
    [17] 朱凌, 高军营, 徐良, 等. 矩形冲头冲击下船体板的塑性动力响应[J]. 船舶力学, 2020, 24(5): 643–650. doi: 10.3969/j.issn.1007-7294.2020.05.010

    ZHU L, GAO J Y, XU L, et al. Dynamic plastic response of ship plates subjected to rectangular mass impact[J]. Journal of Ship Mechanics, 2020, 24(5): 643–650 (in Chinese). doi: 10.3969/j.issn.1007-7294.2020.05.010
    [18] JONES N. Structural impact[M]. 2nd ed. Cambridge, UK: Cambridge University Press, 2012.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  33
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-01-29
  • 网络出版日期:  2021-07-13

目录

    /

    返回文章
    返回