Adaptive depth constraint-based underwater binocular image feature matching
-
摘要:
目的 针对水下双目图像特征点稀疏、极线约束模型失效等难题,提出一种基于自适应深度约束的水下图像特征匹配(ADC-UFM)算法。 方法 结合FAST算子与SIFT描述子,提高图像匹配精度;提出基于水下折射因子的特征匹配约束模型(MCM),有效剔除误匹配点;提出自适应阈值选取(ATC)方法,最大限度地保留复杂水下环境下的图像特征信息。 结果 实验结果显示,ADC-UFM算法优于现有的SIFT,SURF和UCC-SIFT等典型方法,匹配准确率可达85.2%,满足实时匹配需求。 结论 研究成果可为基于双目视觉系统的水下三维重建提供关键技术支撑。 Abstract:Objective In this paper, to address sparse feature points and unique epipolar constraints, an adaptive depth constraint-based underwater feature matching (ADC-UFM) scheme is proposed. Methods By combining a features from accelerated segment test (FAST) operator with scale invariant feature transform (SIFT) descriptors, the matching accuracy can be dramatically improved. By introducing an underwater refractive factor, the matching constraint model (MCM) can be effectively established, thereby contributing to eliminating mismatched points. The adaptive threshold choosing (ATC) module is finely devised to preserve image feature information in changeable underwater environments to an extreme extent. Results Comprehensive experiments show that the proposed ADC-UFM scheme can outperform typical matching schemes including SIFT, speeded-up robust features (SURF) and SIFT feature matching based on underwater curve constraint (UCC-SIFT), which not only achieves 85.2% matching accuracy but also meets the real-time requirements. Conclusion The results of this study can provide a reliable guarantee for subsequent underwater 3D reconstruction based on the binocular vision system. -
表 1 双目相机内部参数
Table 1. Internal parameters of binocular camera
参数 左相机 右相机 (fx, fy) (1 201.30, 1 200.86) (1 211.81, 1 207.01) (u0, v0) (319.24, 255.25) (322.34, 316.32) K (0.28, −0.74, 0.01, 0.03, 0.0) (−0.10, −0.06, 0.02, 0.01, 0.00) 表 2 实验结果数据对比
Table 2. Comparison of experimental data
数据来源 算法 匹配对数 正确率/% 匹配时间/s 采集的数据 暗光 SIFT 53 84.9 0.108 SURF 64 84.3 0.060 UCC-SIFT 26 84.6 1.930 ADC-UFM 52 86.5 0.721 旋转 SIFT 98 82.7 0.112 SURF 103 83.4 0.062 UCC-SIFT 52 84.6 1.963 ADC-UFM 73 84.9 0.730 浑浊 SIFT 34 79.4 0.093 SURF 70 78.5 0.058 UCC-SIFT 29 86.2 1.884 ADC-UFM 40 82.5 0.710 公开数据 暗光 SIFT 62 81.3 0.098 SURF 80 82.5 0.060 UCC-SIFT 43 83.7 1.901 ADC-UFM 60 85.0 0.712 旋转 SIFT 121 84.2 0.293 SURF 107 83.1 0.061 UCC-SIFT 62 85.4 1.970 ADC-UFM 90 85.6 0.732 浑浊 SIFT 172 84.3 0.300 SURF 195 83.5 0.064 UCC-SIFT 98 85.7 1.991 ADC-UFM 120 86.7 0.753 -
[1] KAWAI R, YAMASHITA A, KANEKO T. Three-dimensional measurement of objects in water by using space encoding method[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009: 2830−2835. [2] BROWN M Z, BURSCHKA D, HAGER G D. Advances in computational stereo[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 993–1008. doi: 10.1109/TPAMI.2003.1217603 [3] LOWE D G. Distinctive image features from scale-invariant keypoint[J]. International Journal of Computer Vision, 2004, 60(2): 91–110. doi: 10.1023/B:VISI.0000029664.99615.94 [4] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3): 346–359. doi: 10.1016/j.cviu.2007.09.014 [5] KE Y, SUKTHANKAR R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC, USA: IEEE, 2004: 506–513. [6] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 International Conference on Computer Vision (ICCV). Barcelona, Spain: IEEE, 2011: 2564–2571. [7] NEGAHDARIPOUR S, SARAFRAZ A. Improved stereo matching in scattering media by incorporating a backscatter cue[J]. IEEE Transactions on Image Processing, 2014, 23(12): 5743–5755. doi: 10.1109/TIP.2014.2358882 [8] 李雅倩, 张岩松, 李 海滨, 等. 基于深度约束的水下稠密立体匹配[J]. 光子学报, 2017, 46(7): 0715001-1−0715001-10. doi: 10.3788/gzxb20174607.0715001LI Y Q, ZHANG Y S, LI H B, et al. Underwater dense stereo matching based on depth constraint[J]. Acta Photonica Sinica, 2017, 46(7): 0715001-1−0715001-10 (in Chinese). doi: 10.3788/gzxb20174607.0715001 [9] GEDGE J. Underwater stereo matching and its calibration[D]. Edmonton: University of Alberta, 2011. [10] FERREIRA R, COSTEIRA J P, SANTOS J A. Stereo reconstruction of a submerged scene[M]//MARQUES J S, PÉREZ DE LA BLANCA N, PINA P. Pattern Recognition and Image Analysis. Berlin, Heidelberg: Springer, 2005: 102–109. [11] 张强, 郝凯, 李海滨. 水下环境中基于曲线约束的SIFT特征匹配算法研究[J]. 光学学报, 2014, 34(2): 0215003-1−0215003-7. doi: 10.3788/AOS201434.0215003ZHANG Q, HAO K, LI H B. Research on scale invariant feature transform feature matching based on underwater curve constraint[J]. Acta Optica Sinica, 2014, 34(2): 0215003-1−0215003-7 (in Chinese). doi: 10.3788/AOS201434.0215003 [12] 李佳宽, 孙春生, 胡艺铭, 等. 一种基于ORB特征的水下立体匹配方法[J]. 光电工程, 2019, 46(4): 180456.LI J K, SUN C S, HU Y M, et al. An underwater stereo matching method based on ORB features[J]. Opto-Electronic Engineering, 2019, 46(4): 180456 (in Chinese). [13] CHEN H H, WANG C C, SHIU D C, et al. A preliminary study on positioning of an underwater vehicle based on feature matching of seafloor images[C]//2018 OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO). Kobe, Japan: IEEE, 2018: 1–6. [14] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1): 105–119. doi: 10.1109/TPAMI.2008.275 [15] 张岩松. 基于深度约束的水下立体匹配研究[D]. 秦皇岛: 燕山大学, 2017.ZHANG Y S. Researching on underwater stereo matching based on depth constraint[D]. Qinhuangdao: Yanshan University, 2017 (in Chinese). [16] 刘士荣, 吴楚, 张波涛, 等. 基于极线约束SIFT特征和粒子滤波的目标跟踪算法[J]. 上海交通大学学报, 2014, 48(7): 1026–1032,1038.LIU S R, WU C, ZHANG B T, et al. A tracking algorithm based on SIFT feature and particle filter with epipolar constraint[J]. Journal of Shanghai Jiaotong University, 2014, 48(7): 1026–1032,1038 (in Chinese). [17] 李炼, 李维嘉, 吴耀中. 基于红色暗通道先验理论与CLAHE算法的水下图像增强算法[J]. 中国舰船研究, 2019, 14(增刊 1): 175–182. doi: 10.19693/j.issn.1673-3185.01508LI L, LI W J, WU Y Z. An underwater image enhancement algorithm based on RDCP and CLAHE[J]. Chinese Journal of Ship Research, 2019, 14(Supp 1): 175–182 (in Chinese). doi: 10.19693/j.issn.1673-3185.01508 [18] SKINNER K A, ZHANG J M, OLSON E A, et al. UWStereoNet: unsupervised learning for depth estimation and color correction of underwater stereo imagery[C]//Proceedings of 2019 International Conference on Robotics and Automation (ICRA). Montreal, QC, Canada: IEEE, 2019: 7947–7954. [19] SWIRSKI Y, SCHECHNER Y Y. 3Deflicker from motion[C]//Proceedings of IEEE International Conference on Computational Photography (ICCP). Cambridge, MA, USA: IEEE, 2013: 1–9. -