留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高性能离散元方法的极区浮式平台冰载荷数值分析

孔帅 季顺迎 季少鹏 王迎晖 刚旭皓

孔帅, 季顺迎, 季少鹏, 等. 基于高性能离散元方法的极区浮式平台冰载荷数值分析[J]. 中国舰船研究, 2021, 16(5): 1–7 doi: 10.19693/j.issn.1673-3185.02192
引用本文: 孔帅, 季顺迎, 季少鹏, 等. 基于高性能离散元方法的极区浮式平台冰载荷数值分析[J]. 中国舰船研究, 2021, 16(5): 1–7 doi: 10.19693/j.issn.1673-3185.02192
KONG S, JI S Y, JI S P, et al. Numerical analysis of ice load on floating platform in polar region based on high-performance discrete element method[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–7 doi: 10.19693/j.issn.1673-3185.02192
Citation: KONG S, JI S Y, JI S P, et al. Numerical analysis of ice load on floating platform in polar region based on high-performance discrete element method[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–7 doi: 10.19693/j.issn.1673-3185.02192

基于高性能离散元方法的极区浮式平台冰载荷数值分析

doi: 10.19693/j.issn.1673-3185.02192
基金项目: 工信部高技术船舶科研计划资助项目(2017-614)
详细信息
    作者简介:

    孔帅,男,1990年生,博士,工程师

    季顺迎,男,1972年生,博士,教授。研究方向:极地船舶与海洋工程。E-mail:jisy@dlut.edu.cn

    通信作者:

    孔帅

  • 中图分类号: U661.4

Numerical analysis of ice load on floating platform in polar region based on high-performance discrete element method

  • 摘要:   目的  冰载荷是极区浮式平台结构安全性分析及完整性管理的重要输入,建立快速有效的冰载荷预报技术可保障浮式平台的安全运营。  方法  基于CUDA-C并行处理技术,建立可用于海冰模拟的高性能离散元方法(DEM)。采用Voronoi分割算法生成平台作业时的碎冰域,其海冰由具有黏结−失效效应的球体单元组成,且黏结单元的破碎由失效准则控制。平台结构由三角单元构成,考虑其在浮力、锚链恢复力及冰载荷共同作用下的六自由度运动。  结果  由模型计算得到,浮式结构在海冰持续作用下的总体冰载荷合理分布在实测数据范围内。  结论  极区浮式平台冰区运行时冰载荷受冰厚影响较大,应配套破冰服务以减弱其作业区域的冰情。
  • 图  1  单元间法向与切向接触模型

    Figure  1.  Normal and tangential contact model between elements

    图  2  模拟海冰冻结效应的平行黏结模型

    Figure  2.  Parallel bond model for simulating the freezing effect of sea ice

    图  3  Kulluk浮式平台

    Figure  3.  Kulluk floating platform

    图  4  锚链布置图

    Figure  4.  Layout of the mooring lines

    图  5  3个方向的船体冰载荷时程曲线

    Figure  5.  Time histories of ice loads in three directions

    图  6  离散元法模拟中破碎冰与Kulluk浮式平台间的相互作用

    Figure  6.  Interaction between pack ice and Kulluk floating platform simulated with DEM

    图  7  离散元法模拟结果与实测数据的对比[26]

    Figure  7.  Comparison between the DEM results and field test data[26]

    表  1  Kulluk浮式平台与碎冰作用时的离散单元计算参数

    Table  1.   Computational parameters of DEM when Kulluk floating platform interacts with pack ice

    参数数值
    浮冰区域面积(长×宽)/m2$ 300 \times 200 $
    海冰单元平均面积Ai /m2200
    海冰密集度Si /%70
    海冰密度ρi /(kg·m-3)920
    海水密度ρw /(kg·m-3)1 035
    冰速vi /(kg·m-1)0.5
    冰厚hi /m0.5~2.0
    颗粒间的弹性模量$G$/GPa1
    颗粒间法向(切向)黏结强度$ {\bar{\sigma }}_{\mathrm{n}}\left(\bar{\tau }\right) $/MPa0.6
    下载: 导出CSV
  • [1] 张侠, 杨惠根, 王洛. 我国北极航道开拓的战略选择初探[J]. 极地研究, 2016, 28(2): 267–276.

    ZHANG X, YANG H G, WANG L. Strategic thinking on China's involvement in the development of Arctic sea routes[J]. Chinese Journal of Polar Research, 2016, 28(2): 267–276 (in Chinese).
    [2] EBINGER C K, ZAMBETAKIS E. The geopolitics of Arctic melt[J]. International Affairs, 2009, 85(6): 1215–1232. doi: 10.1111/j.1468-2346.2009.00858.x
    [3] YUE Q J, BI X J. Ice-induced jacket structure vibrations in Bohai sea[J]. Journal of Cold Regions Engineering, 2000, 14(2): 81–92. doi: 10.1061/(ASCE)0887-381X(2000)14:2(81)
    [4] 李想, 李红霞, 黄一. 核电平台连接机构设计与运动响应分析[J]. 中国舰船研究, 2020, 15(1): 152–161. doi: 10.19693/j.issn.1673-3185.01786

    LI X, LI H X, HUANG Y. Design of connecting mechanism and motion response analysis on nuclear power platform[J]. Chinese Journal of Ship Research, 2020, 15(1): 152–161 (in Chinese). doi: 10.19693/j.issn.1673-3185.01786
    [5] WRIGHT B. Full scale experience with Kulluk stationkeeping operations in pack ice (with reference to Grand Banks Developments)[R]. Canada: National Research Council, 2000: 52.
    [6] 董斌, 钱源, 李元泰, 等. 船体(平台)渤海冰区作业安全性分析[J]. 中国舰船研究, 2020, 15(1): 145–151, 169. doi: 10.19693/j.issn.1673-3185.01553

    DONG B, QIAN Y, LI Y T, et al. Safety analysis of hull (platform) operation in Bohai sea ice area[J]. Chinese Journal of Ship Research, 2020, 15(1): 145–151, 169 (in Chinese). doi: 10.19693/j.issn.1673-3185.01553
    [7] 王健伟, 邹早建. 基于非线性有限元法的船舶−冰层碰撞结构响应研究[J]. 振动与冲击, 2015, 34(23): 125–130.

    WANG J W, ZOU Z J. Ship's structural response during its collision with level ice based on nonlinear finite element method[J]. Journal of Vibration and Shock, 2015, 34(23): 125–130 (in Chinese).
    [8] 薛彦卓, 陆锡奎, 王庆, 等. 冰三点弯曲试验的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(4): 607–613.

    XUE Y Z, LU X K, WANG Q, et al. Simulation of three-point bending test of ice based on peridynamic[J]. Journal of Harbin Engineering University, 2018, 39(4): 607–613 (in Chinese).
    [9] HOPKINS M A, THORNDIKE A S. Floe formation in Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2006, 111(C1): C11S23.
    [10] SUN S S, SHEN H H. Simulation of pancake ice load on a circular cylinder in a wave and current field[J]. Cold Regions Science and Technology, 2012, 78: 31–39. doi: 10.1016/j.coldregions.2012.02.003
    [11] SHEN H H, HIBLER W D, LEPPÄRANTA M. On applying granular flow theory to a deforming broken ice field[J]. Acta Mechanica, 1986, 63(1/2/3/4): 143–160.
    [12] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65.
    [13] TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2): 107–129. doi: 10.1016/j.coldregions.2009.10.003
    [14] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [15] Itasca Consulting Group. Inc. PFC3D (Particle Flow Code in 3 Dimensions) Version 4.0[M]. Minneapolis: ICG, 2008.
    [16] 阿比尔的, 郑颖人, 冯夏庭, 等. 平行黏结模型宏细观力学参数相关性研究[J]. 岩土力学, 2018, 39(4): 1289–1301.

    ABI E D, ZHENG Y R, FENG X T, et al. Relationship between particle micro and macro mechanical parameters of parallel-bond model[J]. Rock and Soil Mechanics, 2018, 39(4): 1289–1301 (in Chinese).
    [17] 龙雪, 宋础, 季顺迎, 等. 锥角对锥体结构抗冰性能影响的离散元分析[J]. 海洋工程, 2018, 36(6): 96–100.

    LONG X, SONG C, JI S Y, et al. Influence of cone angle on anti-icing performance of conical structure with numerical simulations of discrete element method[J]. The Ocean Engineering, 2018, 36(6): 96–100 (in Chinese).
    [18] 蔡柯, 季顺迎. 平整冰与船舶结构相互作用的离散元分析[J]. 船舶与海洋工程, 2016, 32(5): 5–14.

    CAI K, JI S Y. Analysis of interaction between level ice and ship hull based on discrete element method[J]. Naval Architecture and Ocean Engineering, 2016, 32(5): 5–14 (in Chinese).
    [19] 季顺迎, 狄少丞, 李正, 等. 海冰与直立结构相互作用的离散单元数值模拟[J]. 工程力学, 2013, 30(1): 463–469. doi: 10.6052/j.issn.1000-4750.2011.07.0417

    JI S Y, DI S C, LI Z, et al. Discrete element modelling of interaction between sea ice and vertical offshore structures[J]. Engineering Mechanics, 2013, 30(1): 463–469 (in Chinese). doi: 10.6052/j.issn.1000-4750.2011.07.0417
    [20] 狄少丞, 王庆, 薛彦卓, 等. 破冰船冰区操纵性能离散元分析[J]. 工程力学, 2018, 35(11): 249–256. doi: 10.6052/j.issn.1000-4750.2017.09.0698

    DI S C, WANG Q, XUE Y Z, et al. Manoeuvrability analysis of an icebreaker based on discrete element method[J]. Engineering Mechanics, 2018, 35(11): 249–256 (in Chinese). doi: 10.6052/j.issn.1000-4750.2017.09.0698
    [21] 王帅霖, 季顺迎. 锥体导管架海洋平台冰激振动的DEM-FEM耦合分析及高性能算法[J]. 海洋学报, 2017, 39(12): 98–108.

    WANG S L, JI S Y. Ice induced vibration of conical platform based on coupled DEM-FEM model with high efficiency algorithm[J]. Haiyang Xuebao, 2017, 39(12): 98–108 (in Chinese).
    [22] 朱红日, 季顺迎, 刘璐. 基于Voronoi切割算法的碎冰区构造及离散元分析[J]. 计算力学学报, 2019, 36(4): 454–463. doi: 10.7511/jslx20180410001

    ZHU H R, JI S Y, LIU L. Construction of broken ice field with Voronoi tessellation algorithm and its DEM application[J]. Chinese Journal of Computational Mechanics, 2019, 36(4): 454–463 (in Chinese). doi: 10.7511/jslx20180410001
    [23] POLOJÄRVI A, TUHKURI J. On modeling cohesive ridge keel punch through tests with a combined finite-discrete element method[J]. Cold Regions Science and Technology, 2013, 85: 191–205. doi: 10.1016/j.coldregions.2012.09.013
    [24] 狄少丞. 基于GPU并行算法的海洋平台及船舶结构冰荷载的离散元分析[D]. 大连: 大连理工大学, 2015.

    DI S C. Discrete element simulation of ice load on offshore platform and ship hull based on GPU parallel algorithm[D]. Dalian: Dalian University of Technology, 2015 (in Chinese).
    [25] ZHOU L, SU B, RISKA K, et al. Numerical simulation of moored structure station keeping in level ice[J]. Cold Regions Science and Technology, 2012, 71: 54–66. doi: 10.1016/j.coldregions.2011.10.008
    [26] LU W J, LUBBAD R, ALEKSEY S, et al. Parallel channels' fracturing mechanism during ice management operations. Part I: theory[J]. Cold Regions Science and Technology, 2018, 156: 102–116. doi: 10.1016/j.coldregions.2018.07.010
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  29
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 修回日期:  2021-01-27
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回