留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机激励下液舱晃荡数值模拟分析

姜胜超 徐博 王子豪

姜胜超, 徐博, 王子豪. 随机激励下液舱晃荡数值模拟分析[J]. 中国舰船研究, 2022, 17(2): 81–90 doi: 10.19693/j.issn.1673-3185.02183
引用本文: 姜胜超, 徐博, 王子豪. 随机激励下液舱晃荡数值模拟分析[J]. 中国舰船研究, 2022, 17(2): 81–90 doi: 10.19693/j.issn.1673-3185.02183
JIANG S C, XU B, WANG Z H. Numerical simulation analysis of liquid sloshing in tank under random excitation[J]. Chinese Journal of Ship Research, 2022, 17(2): 81–90 doi: 10.19693/j.issn.1673-3185.02183
Citation: JIANG S C, XU B, WANG Z H. Numerical simulation analysis of liquid sloshing in tank under random excitation[J]. Chinese Journal of Ship Research, 2022, 17(2): 81–90 doi: 10.19693/j.issn.1673-3185.02183

随机激励下液舱晃荡数值模拟分析

doi: 10.19693/j.issn.1673-3185.02183
基金项目: 国家自然科学基金资助项目(51909027);中央高校基本科研业务费资助项目(DUT21LK12)
详细信息
    作者简介:

    姜胜超,男,1984年生,博士,副教授。研究方向:波浪与海洋工程结构的相互作用。E-mail:jiangshengchao@foxmail.com

    徐博,男,1995年生,硕士

    王子豪,男,1998年生,硕士生。研究方向:波浪与海洋工程结构的相互作用。E-mail:1429483251@qq.com

    通信作者:

    姜胜超

  • 中图分类号: U661.1

Numerical simulation analysis of liquid sloshing in tank under random excitation

知识共享许可协议
随机激励下液舱晃荡数值模拟分析姜胜超,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  研究随机激励条件下矩形液舱内的瞬态效应、不同谱峰频率与有义激励振幅对液舱晃荡的影响。  方法  采用计算流体力学(CFD)方法建立数值模型,通过与线性势流解析解和实验数据进行对比,验证所提数值模型的可靠性。  结果  结果显示,随机激励瞬态效应对液舱晃荡自由水面变化有显著影响,通过施加缓冲函数可以较快地获取稳定结果;当激励谱谱峰频率接近液舱晃荡固有频率时,液舱晃荡波高响应谱的能量主要集中在液舱的固有频率处,而当激励谱谱峰频率远离液舱晃荡固有频率时,液舱晃荡波高响应谱的能量主要集中在谱峰频率附近;随着激励谱有义振幅的增大,液舱晃荡响应相对于线性波(偏离度为0)其振幅偏离度增大,液舱的非线性显著增强。  结论  对于随机激励的模拟,尤其是激励频率远离固有频率时,对激励历时线进行缓冲函数处理非常有必要;当谱峰频率远离一阶固有频率向更高频移动,在接近第i阶固有频率时,该频率处的峰值将占主导。
  • 图  1  矩形液舱几何模型示意图

    Figure  1.  Schematic diagram of rectangular tank geometry model

    图  2  工况1和工况2下右舱壁波高历程线比较图

    Figure  2.  Comparison of the right bulkhead wave height at Case 1 and Case 2

    图  3  工况3和工况4下右舱壁波高历程线比较图

    Figure  3.  Comparison of the right bulkhead wave height at Case 3 and Case 4

    图  4  工况1下右舱壁波高历时线

    Figure  4.  Right bulkhead wave height history at Case 1

    图  5  工况1下右舱壁波高在100~500 s时间段的FFT谱分析

    Figure  5.  Fast Fourier transform power spectrum analysis of right bulkhead wave height during 100~500 s at Case 1

    图  6  工况2下右舱壁波高历时线

    Figure  6.  Right bulkhead wave height history of Case 2

    图  7  工况2右舱壁波高100~500 s时间段FFT谱分析

    Figure  7.  Power spectrum analysis of right bulkhead wave height during 100~500 s at Case 2

    图  8  不同时间段的能量谱对比

    Figure  8.  Energy spectrum comparison at different time periods

    图  9  右舱壁波高概率密度分布图(${\omega }_{\text{p}}=0.65{\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$

    Figure  9.  Probability density distribution of right bulkhead wave height (${\omega }_{\text{p}}=0.65{\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$)

    图  10  右舱壁波高概率密度分布图(${\omega }_{\text{p}}={\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$

    Figure  10.  Probability density distribution of right bulkhead wave height (${\omega }_{\text{p}}={\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$)

    图  11  右舱壁波高概率密度分布图(${\omega }_{\text{p}}=1.5{\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$

    Figure  11.  Probability density distribution of right bulkhead wave height (${\omega }_{\text{p}}=1.5{\omega }_{0}\text{ },\text{ }{H}_{\rm{s}}=0.01d$)

    图  12  右舱壁波高历时线 (Hs = 0.01d)

    Figure  12.  Right bulkhead wave height history (Hs = 0.01d)

    图  13  右舱壁波高能量谱(${\omega _{\text{p}}} \leqslant {\omega _0}{\text{ }},{\text{ }}{H_{\rm{s}}} = 0.01d$

    Figure  13.  Power spectrum of right bulkhead wave height (${\omega _{\text{p}}} \leqslant {\omega _0}{\text{ }},{\text{ }}{H_{\rm{s}}} = 0.01d$)

    图  14  右舱壁波高能量谱(${\omega _{\text{p}}} > {\omega _0}{\text{ }},{\text{ }}{H_{\rm{s}}} = 0.01d$

    Figure  14.  Power spectrum of right bulkhead wave height (${\omega _{\text{p}}} > {\omega _0}{\text{ }},{\text{ }}{H_{\rm{s}}} = 0.01d$)

    图  15  右舱壁波高历时线 (ωp = ω0)

    Figure  15.  Right bulkhead wave height history (ωp = ω0)

    图  16  右舱壁波高概率密度分布图(${H_{\rm{s}}} = 0.01d$

    Figure  16.  Probability density distribution of right bulkhead wave height (${H_{\rm{s}}} = 0.01d$)

    图  17  右舱壁波高能量谱

    Figure  17.  Power spectrum of right bulkhead wave height

    表  1  振幅周期统计分析

    Table  1.   Statistical analysis of amplitude and period

    ${\omega _{\rm{p}}}$时间段
    100~500 s500~900 s900~1 300 s
    Aave/m0.65${\omega _0}$0.0240.0270.026
    ${\omega _0}$0.0420.0390.040
    1.5${\omega _0}$0.0260.0250.028
    T/s0.65${\omega _0}$0.9280.8170.820
    ${\omega _0}$1.0490.9951.032
    1.5${\omega _0}$0.7430.7850.783
    下载: 导出CSV

    表  2  标准差统计分析

    Table  2.   Statistical analysis of standard deviation

    激励幅值Hs 右舱壁波高标准差水平力标准差
    0.002d0.009 7534.81
    0.006d0.031 0296.22
    0.010d0.023 81142.99
    下载: 导出CSV
  • [1] FALTINSEN O M. A nonlinear theory of sloshing in rectangular tanks[J]. Journal of Ship Research, 1974, 18(4): 224–241. doi: 10.5957/jsr.1974.18.4.224
    [2] FALTINSEN O M, TIMOKHA A N. Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth[J]. Journal of Fluid Mechanics, 2002, 470: 319–357. doi: 10.1017/S0022112002002112
    [3] ZHANG H S, WU P F, LIU W B. The analysis of second-order sloshing resonance in a 3-D tank[J]. Journal of Hydrodynamics, Ser. B, 2014, 26(2): 309–315. doi: 10.1016/S1001-6058(14)60034-2
    [4] KIM Y. Numerical simulation of sloshing flows with impact load[J]. Applied Ocean Research, 2001, 23(1): 53–62. doi: 10.1016/S0141-1187(00)00021-3
    [5] KIM Y, SHIN Y S, LEE K H. Numerical study on slosh-induced impact pressures on three-dimensional prismatic tanks[J]. Applied Ocean Research, 2004, 26(5): 213–226. doi: 10.1016/j.apor.2005.03.004
    [6] BISWAL K C, BHATTACHARYYA S K, SINHA P K. Non-linear sloshing in partially liquid filled containers with baffles[J]. International Journal for Numerical Methods in Engineering, 2006, 68(3): 317–337. doi: 10.1002/nme.1709
    [7] LU L, JIANG S C, ZHAO M, et al. Two-dimensional viscous numerical simulation of liquid sloshing in rectangular tank with/without baffles and comparison with potential flow solutions[J]. Ocean Engineering, 2015, 108: 662–677. doi: 10.1016/j.oceaneng.2015.08.060
    [8] LIU D M, LIN P Z. Three-dimensional liquid sloshing in a tank with baffles[J]. Ocean Engineering, 2009, 36(2): 202–212. doi: 10.1016/j.oceaneng.2008.10.004
    [9] 肖凯隆, 陈作钢. 多液舱晃荡与养殖工船时域耦合运动的数值模拟[J]. 中国舰船研究, 2020, 15(1): 136–144.

    XIAO K L, CHEN Z G. Numerical simulation of aquaculture ship motions coupled with tanks sloshing in time domain[J]. Chinese Journal of Ship Research, 2020, 15(1): 136–144 (in Chinese).
    [10] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40–65.
    [11] VAN DER VORST H A. BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear system[J]. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2): 631–644.
    [12] FAITINSEN O M. A numerical nonlinear method of sloshing in tanks with two-dimensional flow[J]. Journal of Ship Research, 1978, 22(3): 193–202. doi: 10.5957/jsr.1978.22.3.193
  • ZG2183_en.pdf
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  133
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-15
  • 修回日期:  2021-03-05
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-04-20

目录

    /

    返回文章
    返回