H∞ robust control design for coupled Ciscrea AUV model
-
摘要:
目的 为实现Ciscrea自主式水下航行器(AUV)的空间轨迹跟踪与艏摇控制,设计一种多输入多输出(MIMO)鲁棒控制器。 方法 采用摄动法将AUV模型中惯性矩阵的参数不确定性和二次非线性阻尼作用表述为不确定集合,通过线性分式变换(LFT)得到广义系统。针对广义系统,采用H-infinity 综合方法求解AUV的MIMO鲁棒控制器,以及结构奇异值方法分析控制器的鲁棒稳定裕度。通过MATLAB仿真,模拟AUV的三维轨迹跟踪与艏摇控制,以验证鲁棒控制器性能,并在有/无干扰的情况下对其跟踪能力进行比较。 结果 通过计算得到了稳定鲁棒控制器的结构奇异值的上、下界。结果表明,设计的鲁棒控制器可有效消除干扰信号引起的输出扰动。 结论 所提控制方法具有良好的抗干扰性能,适合用于解决AUV多自由度模型中参数不确定性和非线性问题,并可为AUV在实际海洋环境下的运动控制研究提供有益参考。 Abstract:Objective A multi-input multi-output (MIMO) robust controller is proposed to realize the trajectory tracking and yaw control of a four-DOF Ciscrea autonomous underwater vehicle (AUV) model. Methods The parameter uncertainty of the inertia matrix and quadratic damping action is formulated as an uncertain structure via the perturbation method, and the general system is derived by linear fraction transformation (LFT). The H-infinity synthesis method is applied to solve the MIMO robust controller for the AUV general system, and the structure singular value analysis method is used to compute the robust stability margin. To validate the robust yaw controller, AUV's three-dimensional trajectory tracking and yaw control scenarios are simulated using MATLAB. The tracking performance is compared between interference and non-interference control conditions. Results The upper and lower bounds of the structure singular value are obtained for the stable robust controller.The elimination of perturbation on AUV output shows effective anti-jamming performance. Conclusions The proposed control method is available for solving the parameter uncertainty and nonlinearity issues of AUV models, which can provides a specific application for addressing AUV motion and attitude control problems in real ocean environments. -
表 1 Ciscrea AUV四自由度数学模型的运动参数
Table 1. Four-DOF kinematic parameters of Ciscrea AUV
自由度 力/N和
力矩/(N·m)速度/(m·s−1)和
角速度/(rad·s−1)位置/m和
欧拉角/rad横荡 X u x 纵荡 Y v y 垂荡 Z w $z $ 艏摇 N r ψ 表 2 不同性能指标对应的目标函数
Table 2. Object functions corresponding to different performance indexes
性能指标 目标函数 良好的跟踪能力 ${\left\| { { {\boldsymbol{T} }_{ {{r} } \to { { {e} }_{} } } } } \right\|_\infty }$ 较优的控制输出能量 ${\left\| { { {\boldsymbol{T} }_{ {\boldsymbol{w} } \to { { {u} }_{} } } } } \right\|_\infty }$ 较强的干扰抑制能力 ${\left\| { { {\boldsymbol{T} }_{ {{d} } \to { {{y} }_{\rm{p} } } } } } \right\|_\infty }$ 较强的噪声抑制能力 ${\left\| { { {\boldsymbol{T} }_{ {{n} } \to { {{y} }_{\rm{p} } } } } } \right\|_\infty }$ -
[1] XIANG X B, YU C Y, LAPIERRE L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2): 572–586. doi: 10.1007/s40815-017-0401-3 [2] 王建国, 姜春萌, 吴方良, 等. 水下航行体的改进S面运动控制器[J]. 中国舰船研究, 2013, 8(5): 41–45. doi: 10.3969/j.issn.1673-3185.2013.05.007WANG J G, JIANG C M, WU F L, et al. An improved S-plane controller for the motion control of underwater vehicles[J]. Chinese Journal of Ship Research, 2013, 8(5): 41–45 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.05.007 [3] YANG R, CLEMENT B, MANSOUR A, et al. Modeling of a complex-shaped underwater vehicle for robust control scheme[J]. Journal of Intelligent & Robotic Systems, 2015, 80(3): 491–506. [4] FOSSEN T I. Guidance and control of ocean vehicles[D]. Chichester, England: University of Trondheim, 1999. [5] YANG R, CLEMENT B, MANSOUR A, et al. Robust heading control and its application to CISCREA underwater vehicle[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1–6. [6] ROSENDO J L, CLEMENT B, GARELLI F. Experimental validation of constraint mitigation algorithm in underwater robot depth control[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2019, 233(3): 264–275. doi: 10.1177/0959651818791399 [7] GUERRERO J, TORRES J, CREUZE V, et al. Saturation based nonlinear PID control for underwater vehicles: design, stability analysis and experiments[J]. Mechatronics, 2019, 61: 96–105. doi: 10.1016/j.mechatronics.2019.06.006 [8] ZAMES G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 301–320. doi: 10.1109/TAC.1981.1102603 [9] DOYLE J C, GLOVER K, KHARGONEKAR P, et al. State-space solutions to standard H2 and H∞ control problems[J]. IEEE Transactions on Automatic Control, 1989, 34(8): 831–847. doi: 10.1109/9.29425 [10] BALL J A, COHEN N. Sensitivity minimization in an H∞ norm: parametrization of all suboptimal solutions[J]. International Journal of Control, 1987, 46(3): 785–816. doi: 10.1080/00207178708547393 [11] NESTEROV Y, NEMIROVSKII A. Interior-Point Polynomial Algorithms in Convex Programming[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994. [12] GAHINET P, APKARIAN P. A linear matrix inequality approach to H∞ control[J]. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421–448. doi: 10.1002/rnc.4590040403 [13] PEAUCELLE D, ARZELIER D. Robust multi-objective control toolbox[C]//2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich, Germany: IEEE, 2006: 1152–1157. [14] HENRION D. LMI optimization for fixed-order H∞ controller design[C]//42nd IEEE International Conference on Decision and Control. Maui, HI, USA: IEEE, 2003: 4646–4651. [15] YAHYA M, ARSHAD M R. Highly responsive heading control of underactuated modified BLUEROV using sliding-mode controller[C]//ARSHAD M R, TOKHI M O, SILVA M, et al. 22nd International Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR 2019). Kuala Lumpur, Malaysia: CLAWAR Association Ltd., 2019: 226–233. [16] GEISBERT J S. Hydrodynamic modeling for autonomous underwater vehicles using computational and semi-empirical methods[D]. Virginia, USA: Virginia Polytechnic Institute and State University, 2007. [17] YANG R. Modeling and robust control approach for underwater vehicles[D]. Qingdao: Ocean University of China, 2016. [18] SARAH T. Leader-Follower approach with an on-board localization scheme for underwater swarm applications[D]. Thuwal, Kingdom of Saudi Arabia: King Abdullah University of Science and Technology, 2019. [19] GU D W, PETKOV P, KONSTANTINOV M M. Robust control design with MATLAB®[M]. New York: Springer Science & Business Media, 2005. [20] ZHOU K, DOYLE J C. Essentials of robust control[M]. Upper Saddle River, NJ: Prentice-Hall, Inc., 1998. [21] LUNDSTRÖM P, SKOGESTAD S, WANG Z Q. Performance weight selection for H-infinity and μ-control methods[J]. Transactions of the Institute of Measurement and Control, 1991, 13(5): 241–252. doi: 10.1177/014233129101300504 [22] YOUNG P M, NEWLIN M P, DOYLE J C. μ analysis with real parametric uncertainty[C]//Proceedings of the 30th IEEE Conference on Decision and Control. Brighton, UK: IEEE, 1991: 1251–1256. -