留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ciscrea AUV耦合模型的H 鲁棒控制器设计

刘艳 冯旭琛 杨睿 黎明 冯一飞

刘艳, 冯旭琛, 杨睿, 等. 基于Ciscrea AUV耦合模型的H ∞鲁棒控制器设计[J]. 中国舰船研究, 2021, 16(6): 191–200 doi: 10.19693/j.issn.1673-3185.02176
引用本文: 刘艳, 冯旭琛, 杨睿, 等. 基于Ciscrea AUV耦合模型的H 鲁棒控制器设计[J]. 中国舰船研究, 2021, 16(6): 191–200 doi: 10.19693/j.issn.1673-3185.02176
LIU Y, FENG X C, YANG R, et al. H∞ robust control design for coupled Ciscrea AUV model[J]. Chinese Journal of Ship Research, 2021, 16(6): 191–200 doi: 10.19693/j.issn.1673-3185.02176
Citation: LIU Y, FENG X C, YANG R, et al. H robust control design for coupled Ciscrea AUV model[J]. Chinese Journal of Ship Research, 2021, 16(6): 191–200 doi: 10.19693/j.issn.1673-3185.02176

基于Ciscrea AUV耦合模型的H 鲁棒控制器设计

doi: 10.19693/j.issn.1673-3185.02176
基金项目: 国家自然科学基金资助项目(51709245);青岛博士后基金资助项目(861705040024)
详细信息
    作者简介:

    刘艳,女,1996年生,硕士生。研究方向:水下航行器鲁棒控制。E-mail:m15063998532@163.com

    冯旭琛,男,1995年生,硕士生。研究方向:悬浮式水下航行器运动控制。E-mail:1246183659@qq.com

    杨睿,男,1987年生,博士,讲师。研究方向:无人水面、水下航行器的建模与控制方法,FPGA嵌入式技术与机器人任务系统。E-mail:yangrui@ouc.edu.cn

    通信作者:

    冯旭琛

  • 中图分类号: U674.941;U664.82+2

H robust control design for coupled Ciscrea AUV model

知识共享许可协议
基于Ciscrea AUV耦合模型的H 鲁棒控制器设计刘艳,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  为实现Ciscrea自主式水下航行器(AUV)的空间轨迹跟踪与艏摇控制,设计一种多输入多输出(MIMO)鲁棒控制器。  方法  采用摄动法将AUV模型中惯性矩阵的参数不确定性和二次非线性阻尼作用表述为不确定集合,通过线性分式变换(LFT)得到广义系统。针对广义系统,采用H-infinity 综合方法求解AUV的MIMO鲁棒控制器,以及结构奇异值方法分析控制器的鲁棒稳定裕度。通过MATLAB仿真,模拟AUV的三维轨迹跟踪与艏摇控制,以验证鲁棒控制器性能,并在有/无干扰的情况下对其跟踪能力进行比较。  结果  通过计算得到了稳定鲁棒控制器的结构奇异值的上、下界。结果表明,设计的鲁棒控制器可有效消除干扰信号引起的输出扰动。  结论   所提控制方法具有良好的抗干扰性能,适合用于解决AUV多自由度模型中参数不确定性和非线性问题,并可为AUV在实际海洋环境下的运动控制研究提供有益参考。
  • 图  1  不确定性模型系统结构图

    Figure  1.  Block diagram of the uncertainty model

    图  2  $ {{\boldsymbol{M}}^{{ - 1}}} $$ {\boldsymbol{D}} $的上LFT表示

    Figure  2.  Upper LFT formulation of $ {{\boldsymbol{M}}^{{ - 1}}} $ and $ {\boldsymbol{D}} $

    图  3  不确定性系统结构图

    Figure  3.  Block diagram of the uncertainty system

    图  4  开环模型线性分式变换

    Figure  4.  Linear fraction transformation of the open-loop model

    图  5  广义系统${{\boldsymbol{G}}_{\rm{cis}}}$奇异值曲线

    Figure  5.  Singular value curves of the general system ${{\boldsymbol{G}}_{\rm{cis}}}$

    图  6  一般化的跟踪问题原理图

    Figure  6.  Block diagram of the general tracking problem

    图  7  ${H_\infty }$鲁棒综合问题的互连系统表示

    Figure  7.  Interconnection system formulation for robust ${H_\infty }$ synthesis problem

    图  8  闭环系统${H_\infty }$控制框图

    Figure  8.  Block diagram of ${H_\infty }$ control for the closed-loop system

    图  9  权重函数逆函数幅频特性曲线

    Figure  9.  Frequency response of the inverse of weighting function

    图  10  闭环系统奇异值曲线

    Figure  10.  Singular value curves of the closed-loop system

    图  11  有参考输入下的标称闭环系统暂态响应

    Figure  11.  Transient response of the nominal closed-loop system under reference signal input

    图  12  有干扰输入下标称闭环系统的暂态响应

    Figure  12.  Transient response of the nominal closed-loop system under disturbance signal input

    图  13  有/无干扰下AUV标称系统轨迹跟踪曲线对比

    Figure  13.  Comparison of trajectory tracking curves of the AUV nominal system with and without interference

    图  14  有/无干扰下AUV标称系统轨迹跟踪在不同坐标平面投影曲线

    Figure  14.  Trajectory tracking projection curves of the AUV nominal system on different coordinate planes with and without interference

    图  15  有/无干扰下AUV艏摇控制暂态响应

    Figure  15.  Transient response of the AUV yawing control with and without interference

    图  16  有干扰下摄动系统三维轨迹跟踪曲线

    Figure  16.  Three-dimensional trajectory tracking curves of the AUV perturbation system with interference

    图  17  闭环系统鲁棒稳定性分析框图

    Figure  17.  Robust stability analysis of the feedback system

    图  18  闭环系统结构奇异值方法分析

    Figure  18.  Structure singular value analysis of the closed-loop system

    表  1  Ciscrea AUV四自由度数学模型的运动参数

    Table  1.   Four-DOF kinematic parameters of Ciscrea AUV

    自由度力/N和
    力矩/(N·m)
    速度/(m·s−1)和
    角速度/(rad·s−1)
    位置/m和
    欧拉角/rad
    横荡Xux
    纵荡Yvy
    垂荡Zw$z $
    艏摇Nrψ
    下载: 导出CSV

    表  2  不同性能指标对应的目标函数

    Table  2.   Object functions corresponding to different performance indexes

    性能指标目标函数
    良好的跟踪能力${\left\| { { {\boldsymbol{T} }_{ {{r} } \to { { {e} }_{} } } } } \right\|_\infty }$
    较优的控制输出能量${\left\| { { {\boldsymbol{T} }_{ {\boldsymbol{w} } \to { { {u} }_{} } } } } \right\|_\infty }$
    较强的干扰抑制能力${\left\| { { {\boldsymbol{T} }_{ {{d} } \to { {{y} }_{\rm{p} } } } } } \right\|_\infty }$
    较强的噪声抑制能力${\left\| { { {\boldsymbol{T} }_{ {{n} } \to { {{y} }_{\rm{p} } } } } } \right\|_\infty }$
    下载: 导出CSV
  • [1] XIANG X B, YU C Y, LAPIERRE L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems, 2018, 20(2): 572–586. doi: 10.1007/s40815-017-0401-3
    [2] 王建国, 姜春萌, 吴方良, 等. 水下航行体的改进S面运动控制器[J]. 中国舰船研究, 2013, 8(5): 41–45. doi: 10.3969/j.issn.1673-3185.2013.05.007

    WANG J G, JIANG C M, WU F L, et al. An improved S-plane controller for the motion control of underwater vehicles[J]. Chinese Journal of Ship Research, 2013, 8(5): 41–45 (in Chinese). doi: 10.3969/j.issn.1673-3185.2013.05.007
    [3] YANG R, CLEMENT B, MANSOUR A, et al. Modeling of a complex-shaped underwater vehicle for robust control scheme[J]. Journal of Intelligent & Robotic Systems, 2015, 80(3): 491–506.
    [4] FOSSEN T I. Guidance and control of ocean vehicles[D]. Chichester, England: University of Trondheim, 1999.
    [5] YANG R, CLEMENT B, MANSOUR A, et al. Robust heading control and its application to CISCREA underwater vehicle[C]//OCEANS 2015-Genova. Genova, Italy: IEEE, 2015: 1–6.
    [6] ROSENDO J L, CLEMENT B, GARELLI F. Experimental validation of constraint mitigation algorithm in underwater robot depth control[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2019, 233(3): 264–275. doi: 10.1177/0959651818791399
    [7] GUERRERO J, TORRES J, CREUZE V, et al. Saturation based nonlinear PID control for underwater vehicles: design, stability analysis and experiments[J]. Mechatronics, 2019, 61: 96–105. doi: 10.1016/j.mechatronics.2019.06.006
    [8] ZAMES G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control, 1981, 26(2): 301–320. doi: 10.1109/TAC.1981.1102603
    [9] DOYLE J C, GLOVER K, KHARGONEKAR P, et al. State-space solutions to standard H2 and H control problems[J]. IEEE Transactions on Automatic Control, 1989, 34(8): 831–847. doi: 10.1109/9.29425
    [10] BALL J A, COHEN N. Sensitivity minimization in an H norm: parametrization of all suboptimal solutions[J]. International Journal of Control, 1987, 46(3): 785–816. doi: 10.1080/00207178708547393
    [11] NESTEROV Y, NEMIROVSKII A. Interior-Point Polynomial Algorithms in Convex Programming[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1994.
    [12] GAHINET P, APKARIAN P. A linear matrix inequality approach to H control[J]. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421–448. doi: 10.1002/rnc.4590040403
    [13] PEAUCELLE D, ARZELIER D. Robust multi-objective control toolbox[C]//2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich, Germany: IEEE, 2006: 1152–1157.
    [14] HENRION D. LMI optimization for fixed-order H controller design[C]//42nd IEEE International Conference on Decision and Control. Maui, HI, USA: IEEE, 2003: 4646–4651.
    [15] YAHYA M, ARSHAD M R. Highly responsive heading control of underactuated modified BLUEROV using sliding-mode controller[C]//ARSHAD M R, TOKHI M O, SILVA M, et al. 22nd International Conference on Climbing and Walking Robots and Support Technologies for Mobile Machines (CLAWAR 2019). Kuala Lumpur, Malaysia: CLAWAR Association Ltd., 2019: 226–233.
    [16] GEISBERT J S. Hydrodynamic modeling for autonomous underwater vehicles using computational and semi-empirical methods[D]. Virginia, USA: Virginia Polytechnic Institute and State University, 2007.
    [17] YANG R. Modeling and robust control approach for underwater vehicles[D]. Qingdao: Ocean University of China, 2016.
    [18] SARAH T. Leader-Follower approach with an on-board localization scheme for underwater swarm applications[D]. Thuwal, Kingdom of Saudi Arabia: King Abdullah University of Science and Technology, 2019.
    [19] GU D W, PETKOV P, KONSTANTINOV M M. Robust control design with MATLAB®[M]. New York: Springer Science & Business Media, 2005.
    [20] ZHOU K, DOYLE J C. Essentials of robust control[M]. Upper Saddle River, NJ: Prentice-Hall, Inc., 1998.
    [21] LUNDSTRÖM P, SKOGESTAD S, WANG Z Q. Performance weight selection for H-infinity and μ-control methods[J]. Transactions of the Institute of Measurement and Control, 1991, 13(5): 241–252. doi: 10.1177/014233129101300504
    [22] YOUNG P M, NEWLIN M P, DOYLE J C. μ analysis with real parametric uncertainty[C]//Proceedings of the 30th IEEE Conference on Decision and Control. Brighton, UK: IEEE, 1991: 1251–1256.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  128
  • HTML全文浏览量:  103
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2021-04-23
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回