留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子膜电解槽电解海水制氯技术的验证

邓亚东 魏威 雍兴跃 周欢 张聪 李崇杰 史亚南

邓亚东, 魏威, 雍兴跃, 等. 离子膜电解槽电解海水制氯技术的验证[J]. 中国舰船研究, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02173
引用本文: 邓亚东, 魏威, 雍兴跃, 等. 离子膜电解槽电解海水制氯技术的验证[J]. 中国舰船研究, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02173
DENG Y D, WEI W, YONG X Y, et al. Verification of chlorine production through seawater electrolysis using ion-exchange membrane electrolytic bath[J]. Chinese Journal of Ship Research, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02173
Citation: DENG Y D, WEI W, YONG X Y, et al. Verification of chlorine production through seawater electrolysis using ion-exchange membrane electrolytic bath[J]. Chinese Journal of Ship Research, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02173

离子膜电解槽电解海水制氯技术的验证

doi: 10.19693/j.issn.1673-3185.02173
详细信息
    作者简介:

    邓亚东,男,1994年生,硕士生,研究方向:材料腐蚀与防护。E-mail:949279088@qq.com

    雍兴跃,男,1966年生,博士,研究员。研究方向:腐蚀电化学。E-mail:yongxy@mail.buct.edu.cn

    通信作者:

    雍兴跃

  • 中图分类号: U672.7+2

Verification of chlorine production through seawater electrolysis using ion-exchange membrane electrolytic bath

  • 摘要:   目的  针对现有海洋防污技术存在的问题,设计了一种用于防污的离子膜电解槽电解海水制氯系统,以研究该电解槽在不同电解条件下的电解规律和效率,  方法  首先,探究稀盐水温度、盐浓度、电流密度和停留时间等因素对电解过程的影响;然后,在上述基础上,采用Minitab软件以比能量消耗率为考核指标,优化电解参数;最后,通过实海试验对海水预处理和电解工艺进行验证。  结果  验证结果表明:电流密度和停留时间的最佳参数分别为3 000 A/m2及46 s;电流效率超过80%,槽压小于6 V;电解后的阴阳两极和离子膜表面干净。  结论  结果表明所设计的系统适合用于电解海水制氯防污。
  • 图  1  离子膜电解槽示意图

    Figure  1.  Schematic of ion-exchange membrane electrolytic bath

    图  2  离子膜电解槽实物图

    Figure  2.  Image of ion-exchange membrane electrolytic bath

    图  3  海水预处理装置实物图

    Figure  3.  Image of seawater pretreatment device

    图  4  电解海水制氯系统工艺流程图

    Figure  4.  Process flowchart of chlorine production system through seawater electrolysis

    图  5  温度对电流效率的影响

    Figure  5.  Effect of temperature on current efficiency

    图  6  温度对槽压的影响

    Figure  6.  Effect of temperature on cell voltage

    图  7  盐水浓度对电流效率的影响

    Figure  7.  Effect of brine concentration on current efficiency

    图  8  盐水浓度对槽压的影响

    Figure  8.  Effect of brine concentration on cell voltage

    图  9  停留时间对电流效率的影响

    Figure  9.  Effect of residence time on current efficiency

    图  10  停留时间对槽压的影响

    Figure  10.  Effect of residence time on cell voltage

    图  11  电流密度对电流效率的影响

    Figure  11.  Effect of current density on current efficiency

    图  12  电流密度对槽压的影响

    Figure  12.  Effect of current density on cell voltage

    图  13  影响海水电解因素之间的交互效应

    Figure  13.  Interaction between two influence factors on seawater electrolysis

    图  14  不同海水浓度下的停留时间和电流密度等值线图

    Figure  14.  Contour of residence time and current density under different brine concentrations of seawater

    图  15  不同海水浓度下的停留时间和电流密度曲面图

    Figure  15.  Surface diagram of residence time and current density under different brine concentrations of seawater

    图  16  电流效率和槽压随电解时间变化

    Figure  16.  Variation of current efficiency and cell voltage with time

    表  1  2%盐水浓度的试验结果

    Table  1.   Experimental results on the 2% brine concentration of seawater

    试验次数影响因素试验结果
    T/ ℃A/(A·m−2S/s${E_{\text{C}}}$/V$ \eta $/%$\omega $/(kW·h·t−1)
    1303 000383.975.43911.6
    2403 000383.887.03 303.0
    3303 500384.070.74 276.4
    4403 500383.978.03 779.4
    5303 000464.176.94 027.8
    6403 000463.887.73 273.3
    7303 500464.275.14 227.0
    8403 500463.982.13 590.6
    下载: 导出CSV

    表  2  3%盐水浓度的试验结果

    Table  2.   Experimental results on the 3% brine concentration of seawater

    试验次数影响因素试验结果
    T/ ℃A/(A·m−2S/s${E_{\text{C}}}$/V$ \eta $/%$\omega $/(kW·h·t−1)
    1303 000383.681.13 263.2
    2403 000383.589.42 957.2
    3303 500383.776.63 650.7
    4403 500383.783.93 333.3
    5303 000463.581.73 329.2
    6403 000463.590.92 911.6
    7303 500463.780.73 465.1
    8403 500463.684.83 208.8
    下载: 导出CSV

    表  3  海水预处理前后离子含量测试结果

    Table  3.   Test results of ion content before and after seawater pretreatment

    离子含量/(10−3 wt‰)
    Ca2+Mg2+ClSO42−NO3
    预处理前256.4808.415 974.253 818.49387.52
    预处理后23.9957.1615 911.53218.10294.44
    下载: 导出CSV

    表  4  预处理后的离子膜电解槽水质要求对比

    Table  4.   Comparion of seawater quality requirements for ion-exchange membrane electrolytic bath

    指标预处理后海水进水水质要求
    Ca2+,Mg2+总含量/(10−3 wt‰)81.15≤100
    NaCl质量浓度/%2.632~5
    浊度/(NTU)0.08≤0.1
    下载: 导出CSV
  • [1] 李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用[J]. 材料开发与应用, 1996, 11(1): 38–43.

    LI C Y, ZHANG G F, FU H T. Development and application of electrolyzing seawater antifouling technique[J]. Development and Application of Materials, 1996, 11(1): 38–43 (in Chinese).
    [2] 胥震, 欧阳清, 易定和. 海洋污损生物防除方法概述及发展趋势[J]. 腐蚀科学与防护技术, 2012, 24(3): 192–198.

    XU Z, OUYANG Q, YI D H. Antifouling method of marine fouling organisms−a review[J]. Corrosion Science and Protection Technology, 2012, 24(3): 192–198 (in Chinese).
    [3] WILLIAMS E E, KNOX-HOLMES B. Control biofouling with low environmental impact[J]. Ocean Industry, 1989, 24: 33–38.
    [4] EVANS S M. Anti-fouling materials[M]//STEELE J H. Encyclopedia of Ocean Sciences. Amsterdam: Academic Press, 2001: 170-176.
    [5] 麻春英. 船舶防污方法研究进展[J]. 化工新型材料, 2019, 47(7): 31–34.

    MA C Y. Research and development of marine antifouling method[J]. New Chemical Materials, 2019, 47(7): 31–34 (in Chinese).
    [6] MARÉCHAL J P, HELLIO C. Challenges for the development of new non-toxic antifouling solutions[J]. International Journal of Molecular Sciences, 2009, 10(11): 4623–4637. doi: 10.3390/ijms10114623
    [7] 任润桃, 梁军. 海洋防污涂料发展现状与研究趋势[J]. 材料开发与应用, 2014, 29(1): 1–8.

    REN R T, LIANG J. Marine antifouling coatings: development and trends[J]. Development and Application of Materials, 2014, 29(1): 1–8 (in Chinese).
    [8] 吴始栋. 舰船防污和环境保护[J]. 船舶, 2002, 3(2): 56–59. doi: 10.3969/j.issn.1001-9855.2002.02.011

    WU S D. Ship pollution prevention and environment protection[J]. Ship & Boat, 2002, 3(2): 56–59 (in Chinese). doi: 10.3969/j.issn.1001-9855.2002.02.011
    [9] 张洪荣, 原培胜. 船舶防污技术[J]. 舰船科学技术, 2006, 28(1): 10–14.

    ZHANG H R, YUAN P S. Pollution prevention technology for ships[J]. Ship Science and Technology, 2006, 28(1): 10–14 (in Chinese).
    [10] 陈永红, 孙团, 孙俊忠, 等. 船舶海洋污损生物防治技术及装置研究进展[J]. 全面腐蚀控制, 2015, 29(12): 52–58.

    CHEN Y H, SUN T, SUN J Z, et al. Progress of marine antifouling solutions and devices[J]. Total Corrosion Control, 2015, 29(12): 52–58 (in Chinese).
    [11] 严涛, 胡煜峰, 王建军, 等. 海水管道系统大型污损生物特点与防除对策[J]. 工业安全与环保, 2013, 39(3): 43–45. doi: 10.3969/j.issn.1001-425X.2013.03.015

    YAN T, HU Y F, WANG J J, et al. Marine macro-fouling in seawater pipelines and its prevention[J]. Industrial Safety and Environmental Protection, 2013, 39(3): 43–45 (in Chinese). doi: 10.3969/j.issn.1001-425X.2013.03.015
    [12] 逯艳英, 吴建华, 孙明先, 等. 海洋生物污损的防治——电解防污技术的新进展[J]. 腐蚀与防护, 2001, 22(12): 530–534. doi: 10.3969/j.issn.1005-748X.2001.12.008

    LU Y Y, WU J H, SUN M X, et al. Prevention of ocean halobios fouling—development of electrolystic anti-fouling technology[J]. Corrosion & Protection, 2001, 22(12): 530–534 (in Chinese). doi: 10.3969/j.issn.1005-748X.2001.12.008
    [13] 张淑玉, 郑纪勇, 付玉彬. 表面植绒海洋防污技术的原理及研究进展[J]. 涂料工业, 2012, 42(12): 72–76. doi: 10.3969/j.issn.0253-4312.2012.12.018

    ZHANG S Y, ZHENG J Y, FU Y B. Principle and research progress of surface flocking as marine antifouling technology[J]. Paint & Coatings Industry, 2012, 42(12): 72–76 (in Chinese). doi: 10.3969/j.issn.0253-4312.2012.12.018
    [14] JING W B, NIU Q L, CHENG L, et al. Characterization of silicon acrylic resin containing silica nanoparticles as candidate materials for antifouling and anticorrosion properties in seawater[J]. Corrosion Reviews, 2020, 38(4): 331–338.
    [15] VOULVOULIS N, SCRIMSHAW M D, LESTER J N. Partitioning of selected antifouling biocides in the aquatic environment[J]. Marine Environmental Research, 2002, 53(1): 1–16. doi: 10.1016/S0141-1136(01)00102-7
    [16] 王丹, 郑晓涛, 于超, 等. 超声波技术在防治海生物中的应用[J]. 船海工程, 2016, 45(5): 91–93, 98. doi: 10.3963/j.issn.1671-7953.2016.05.023

    WANG D, ZHENG X T, YU C, et al. Application of ultrasonic technology in the bio-fouling prevention system[J]. Ship & Ocean Engineering, 2016, 45(5): 91–93, 98 (in Chinese). doi: 10.3963/j.issn.1671-7953.2016.05.023
    [17] DISALVO L H, COBET A B. Control of an estuarine microfouling sequence on optical surfaces using low-intensity ultraviolet irradiation[J]. Applied Microbiology, 1974, 27(1): 172–178. doi: 10.1128/am.27.1.172-178.1974
    [18] RYAN E, TURKMEN S, BENSON S. An investigation into the application and practical use of (UV) ultraviolet light technology for marine antifouling[J]. Ocean Engineering, 2020, 216: 107690. doi: 10.1016/j.oceaneng.2020.107690
    [19] 段继周, 刘超, 刘会莲, 等. 海洋水下设施生物污损及其控制技术研究进展[J]. 海洋科学, 2020, 44(8): 162–177.

    DUAN J Z, LIU C, LIU H L, et al. Research progress of biofouling and its control technology in marine underwater facilities[J]. Marine Sciences, 2020, 44(8): 162–177 (in Chinese).
    [20] 黄运涛, 彭乔. 温度的变化对海水电解阳极过程的影响[J]. 辽宁化工, 2006, 35(4): 191–193, 195. doi: 10.3969/j.issn.1004-0935.2006.04.003

    HUANG Y T, PENG Q. Influence of temperature on the anodic process of seawater electrolysis[J]. Liaoning Chemical Industry, 2006, 35(4): 191–193, 195 (in Chinese). doi: 10.3969/j.issn.1004-0935.2006.04.003
    [21] 黄运涛, 彭乔. 极距和流速对海水电解用阳极的影响[J]. 辽宁化工, 2005, 34(11): 471–473. doi: 10.3969/j.issn.1004-0935.2005.11.004

    HUANG Y T, PENG Q. Study on effects of electrode gap and velocity on positive pole in seawater electrolysis[J]. Liaoning Chemical Industry, 2005, 34(11): 471–473 (in Chinese). doi: 10.3969/j.issn.1004-0935.2005.11.004
    [22] 黄运涛, 彭乔. 海水组成的变化对海水直接电解的影响[J]. 辽宁化工, 2005, 34(6): 237–240. doi: 10.3969/j.issn.1004-0935.2005.06.004

    HUANG Y T, PENG Q. Influence of the composition of seawater to the seawater direct electrolysis[J]. Liaoning Chemical Industry, 2005, 34(6): 237–240 (in Chinese). doi: 10.3969/j.issn.1004-0935.2005.06.004
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  20
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2021-01-16
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回