Verification of chlorine production through seawater electrolysis using ion-exchange membrane electrolytic bath
-
摘要:
目的 针对现有海洋防污技术存在的问题,设计一种用于防污的离子交换膜电解槽电解海水制氯系统,以研究该电解槽在不同电解条件下的电解规律及效率。 方法 首先,探究稀盐水温度、盐浓度、电流密度和停留时间等因素对电解过程的影响;然后,在上述基础上,采用Minitab软件以比能量消耗率为考核指标,优化电解参数;最后,通过实海试验对海水预处理和电解工艺进行验证。 结果 验证结果表明:电流密度和停留时间的最佳参数分别为3 000 A/m2及46 s;电流效率超过80%,槽压小于6 V;电解后的阴阳两极和离子膜表面干净。 结论 结果表明所设计的系统适合用于电解海水制氯防污。 Abstract:Objective To prevent the marine biofouling adhesion and corrosion of ship hulls and pipes, a system is designed which produces chlorine through seawater electrolysis using an ion-exchange membrane electrolytic bath. Thereby, the law and efficency of the electrolytic bath under different conditions is studied. Methods First, the effects of brine temperature, brine concentration, current density and time of brine resided in the bath on the efficiency of the electrolysis process are investigated. Minitab software is then used to optimize the parameters of the electrolysis process using the specific energy consumption rate as the evaluation index. Finally, the seawater pretreatment process and electrolysis process are verified on site under real sea conditions. Results The current density and residence time of the electrolysis parameters were reasonably controlled at 3 000 A/m2 and 46 s respectively, in this case, the current efficiency was higher than 80%, the cell voltage was lower than 6 V, and the surfaces of the anodes, cathodes and ion-exchange membranes after electrolysis were clean. Conclusion The practical tests show that this system can produce chlorine for anti-fouling. -
表 1 2%海水盐浓度的试验结果
Table 1. Experimental results on the 2% brine concentration of seawater
试验次数 影响因素 试验结果 T/ ℃ A/(A·m−2) S/s ${E_{\text{C}}}$/V $ \eta $/% $\omega $/(kW·h·t−1) 1 30 3 000 38 3.9 75.4 3911.6 2 40 3 000 38 3.8 87.0 3 303.0 3 30 3 500 38 4.0 70.7 4 276.4 4 40 3 500 38 3.9 78.0 3 779.4 5 30 3 000 46 4.1 76.9 4 027.8 6 40 3 000 46 3.8 87.7 3 273.3 7 30 3 500 46 4.2 75.1 4 227.0 8 40 3 500 46 3.9 82.1 3 590.6 表 2 3%海水盐浓度的试验结果
Table 2. Experimental results on the 3% brine concentration of seawater
试验次数 影响因素 试验结果 T/ ℃ A/(A·m−2) S/s ${E_{\text{C}}}$/V $ \eta $/% $\omega $/(kW·h·t−1) 1 30 3 000 38 3.6 81.1 3 263.2 2 40 3 000 38 3.5 89.4 2 957.2 3 30 3 500 38 3.7 76.6 3 650.7 4 40 3 500 38 3.7 83.9 3 333.3 5 30 3 000 46 3.5 81.7 3 329.2 6 40 3 000 46 3.5 90.9 2 911.6 7 30 3 500 46 3.7 80.7 3 465.1 8 40 3 500 46 3.6 84.8 3 208.8 表 3 海水预处理前后离子含量测试结果
Table 3. Test results of ion content before and after seawater pretreatment
离子质量分数/10−6 Ca2+ Mg2+ Cl− SO42− NO3− 预处理前 256.4 808.4 15 974.25 3 818.49 387.52 预处理后 23.99 57.16 15 911.53 218.10 294.44 表 4 预处理后的离子交换膜电解槽水质要求对比
Table 4. Comparion of seawater quality requirements for ion-exchange membrane electrolytic bath
指标 预处理后海水 进水水质要求 Ca2+,Mg2+总质量分数/10−6 81.15 ≤100 NaCl质量分数/% 2.63 2~5 浊度/(NTU) 0.08 ≤0.1 -
[1] 李长彦, 张桂芳, 付洪田. 电解海水防污技术的发展及应用[J]. 材料开发与应用, 1996, 11(1): 38–43.LI C Y, ZHANG G F, FU H T. Development and application of electrolyzing seawater antifouling technique[J]. Development and Application of Materials, 1996, 11(1): 38–43 (in Chinese). [2] 胥震, 欧阳清, 易定和. 海洋污损生物防除方法概述及发展趋势[J]. 腐蚀科学与防护技术, 2012, 24(3): 192–198.XU Z, OUYANG Q, YI D H. Antifouling method of marine fouling organisms−a review[J]. Corrosion Science and Protection Technology, 2012, 24(3): 192–198 (in Chinese). [3] WILLIAMS E E, KNOX-HOLMES B. Control biofouling with low environmental impact[J]. Ocean Industry, 1989, 24: 33–38. [4] EVANS S M. Anti-fouling materials[M]//STEELE J H. Encyclopedia of Ocean Sciences. Amsterdam: Academic Press, 2001: 170-176. [5] 麻春英. 船舶防污方法研究进展[J]. 化工新型材料, 2019, 47(7): 31–34.MA C Y. Research and development of marine antifouling method[J]. New Chemical Materials, 2019, 47(7): 31–34 (in Chinese). [6] MARÉCHAL J P, HELLIO C. Challenges for the development of new non-toxic antifouling solutions[J]. International Journal of Molecular Sciences, 2009, 10(11): 4623–4637. doi: 10.3390/ijms10114623 [7] 任润桃, 梁军. 海洋防污涂料发展现状与研究趋势[J]. 材料开发与应用, 2014, 29(1): 1–8.REN R T, LIANG J. Marine antifouling coatings: development and trends[J]. Development and Application of Materials, 2014, 29(1): 1–8 (in Chinese). [8] 吴始栋. 舰船防污和环境保护[J]. 船舶, 2002, 3(2): 56–59. doi: 10.3969/j.issn.1001-9855.2002.02.011WU S D. Ship pollution prevention and environment protection[J]. Ship & Boat, 2002, 3(2): 56–59 (in Chinese). doi: 10.3969/j.issn.1001-9855.2002.02.011 [9] 张洪荣, 原培胜. 船舶防污技术[J]. 舰船科学技术, 2006, 28(1): 10–14.ZHANG H R, YUAN P S. Pollution prevention technology for ships[J]. Ship Science and Technology, 2006, 28(1): 10–14 (in Chinese). [10] 陈永红, 孙团, 孙俊忠, 等. 船舶海洋污损生物防治技术及装置研究进展[J]. 全面腐蚀控制, 2015, 29(12): 52–58.CHEN Y H, SUN T, SUN J Z, et al. Progress of marine antifouling solutions and devices[J]. Total Corrosion Control, 2015, 29(12): 52–58 (in Chinese). [11] 严涛, 胡煜峰, 王建军, 等. 海水管道系统大型污损生物特点与防除对策[J]. 工业安全与环保, 2013, 39(3): 43–45. doi: 10.3969/j.issn.1001-425X.2013.03.015YAN T, HU Y F, WANG J J, et al. Marine macro-fouling in seawater pipelines and its prevention[J]. Industrial Safety and Environmental Protection, 2013, 39(3): 43–45 (in Chinese). doi: 10.3969/j.issn.1001-425X.2013.03.015 [12] 逯艳英, 吴建华, 孙明先, 等. 海洋生物污损的防治——电解防污技术的新进展[J]. 腐蚀与防护, 2001, 22(12): 530–534. doi: 10.3969/j.issn.1005-748X.2001.12.008LU Y Y, WU J H, SUN M X, et al. Prevention of ocean halobios fouling—development of electrolystic anti-fouling technology[J]. Corrosion & Protection, 2001, 22(12): 530–534 (in Chinese). doi: 10.3969/j.issn.1005-748X.2001.12.008 [13] 张淑玉, 郑纪勇, 付玉彬. 表面植绒海洋防污技术的原理及研究进展[J]. 涂料工业, 2012, 42(12): 72–76. doi: 10.3969/j.issn.0253-4312.2012.12.018ZHANG S Y, ZHENG J Y, FU Y B. Principle and research progress of surface flocking as marine antifouling technology[J]. Paint & Coatings Industry, 2012, 42(12): 72–76 (in Chinese). doi: 10.3969/j.issn.0253-4312.2012.12.018 [14] JING W B, NIU Q L, CHENG L, et al. Characterization of silicon acrylic resin containing silica nanoparticles as candidate materials for antifouling and anticorrosion properties in seawater[J]. Corrosion Reviews, 2020, 38(4): 331–338. doi: 10.1515/corrrev-2019-0091 [15] VOULVOULIS N, SCRIMSHAW M D, LESTER J N. Partitioning of selected antifouling biocides in the aquatic environment[J]. Marine Environmental Research, 2002, 53(1): 1–16. doi: 10.1016/S0141-1136(01)00102-7 [16] 王丹, 郑晓涛, 于超, 等. 超声波技术在防治海生物中的应用[J]. 船海工程, 2016, 45(5): 91–93, 98. doi: 10.3963/j.issn.1671-7953.2016.05.023WANG D, ZHENG X T, YU C, et al. Application of ultrasonic technology in the bio-fouling prevention system[J]. Ship & Ocean Engineering, 2016, 45(5): 91–93, 98 (in Chinese). doi: 10.3963/j.issn.1671-7953.2016.05.023 [17] DISALVO L H, COBET A B. Control of an estuarine microfouling sequence on optical surfaces using low-intensity ultraviolet irradiation[J]. Applied Microbiology, 1974, 27(1): 172–178. doi: 10.1128/am.27.1.172-178.1974 [18] RYAN E, TURKMEN S, BENSON S. An investigation into the application and practical use of (UV) ultraviolet light technology for marine antifouling[J]. Ocean Engineering, 2020, 216: 107690. doi: 10.1016/j.oceaneng.2020.107690 [19] 段继周, 刘超, 刘会莲, 等. 海洋水下设施生物污损及其控制技术研究进展[J]. 海洋科学, 2020, 44(8): 162–177.DUAN J Z, LIU C, LIU H L, et al. Research progress of biofouling and its control technology in marine underwater facilities[J]. Marine Sciences, 2020, 44(8): 162–177 (in Chinese). [20] 黄运涛, 彭乔. 温度的变化对海水电解阳极过程的影响[J]. 辽宁化工, 2006, 35(4): 191–193, 195. doi: 10.3969/j.issn.1004-0935.2006.04.003HUANG Y T, PENG Q. Influence of temperature on the anodic process of seawater electrolysis[J]. Liaoning Chemical Industry, 2006, 35(4): 191–193, 195 (in Chinese). doi: 10.3969/j.issn.1004-0935.2006.04.003 [21] 黄运涛, 彭乔. 极距和流速对海水电解用阳极的影响[J]. 辽宁化工, 2005, 34(11): 471–473. doi: 10.3969/j.issn.1004-0935.2005.11.004HUANG Y T, PENG Q. Study on effects of electrode gap and velocity on positive pole in seawater electrolysis[J]. Liaoning Chemical Industry, 2005, 34(11): 471–473 (in Chinese). doi: 10.3969/j.issn.1004-0935.2005.11.004 [22] 黄运涛, 彭乔. 海水组成的变化对海水直接电解的影响[J]. 辽宁化工, 2005, 34(6): 237–240. doi: 10.3969/j.issn.1004-0935.2005.06.004HUANG Y T, PENG Q. Influence of the composition of seawater to the seawater direct electrolysis[J]. Liaoning Chemical Industry, 2005, 34(6): 237–240 (in Chinese). doi: 10.3969/j.issn.1004-0935.2005.06.004 -