留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann方法的液润表面减阻规律

秦声雷 侯国祥 郭文强 周斌斌 姜思远

秦声雷, 侯国祥, 郭文强, 等. 基于格子Boltzmann方法的液润表面减阻规律[J]. 中国舰船研究, 2021, 17(X): 1–10 doi: 10.19693/j.issn.1673-3185.02168
引用本文: 秦声雷, 侯国祥, 郭文强, 等. 基于格子Boltzmann方法的液润表面减阻规律[J]. 中国舰船研究, 2021, 17(X): 1–10 doi: 10.19693/j.issn.1673-3185.02168
QIN S L, HOU G X, GUO W Q, et al. The drag reduction mechanism of liquid-infused surface based on lattice boltzmann method[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–10 doi: 10.19693/j.issn.1673-3185.02168
Citation: QIN S L, HOU G X, GUO W Q, et al. The drag reduction mechanism of liquid-infused surface based on lattice boltzmann method[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–10 doi: 10.19693/j.issn.1673-3185.02168

基于格子Boltzmann方法的液润表面减阻规律

doi: 10.19693/j.issn.1673-3185.02168
基金项目: 国家自然科学基金资助项目(51979115,51679099),中央高校基本科研基金资助项目(HUST.2019kfyXKJC041),结冰与防除冰重点实验室开发课题资助项目(IADL20190204),中央军委科技委国防科技创新特区项目
详细信息
    作者简介:

    秦声雷,男,1996年生,硕士生。研究方向:格子Boltzmann方法,多相流,滑移边界。E-mail:qin931295901@gmail.com

    侯国祥,男,1972年生,博士,博士生导师。研究方向:船舶减阻、推进、隐身

    郭文强,男,1996年生,博士生。研究方向:计算流体力学、数值仿真。E-mail:1626017901@qq.com

    通信作者:

    侯国祥

  • 中图分类号: U661.31+1

The drag reduction mechanism of liquid-infused surface based on lattice boltzmann method

  • 摘要:   目的  近年来,液润表面(LIS)作为一种新型的减阻表面被提出。它将传统疏水表面微沟槽中残存的气体替换为润滑油,进而提高了减阻效果的稳定性。为了更全面地认识液润表面,研究了润滑油溶解性对滑移长度的影响。  方法  基于格子Boltzmann方法伪势模型,对液润表面的滑移现象进行数值模拟,研究润滑油溶解密度和外部剪切率对滑移长度的影响规律。  结果  液润表面可以产生滑移现象,当润滑油完全混溶或极难溶时,滑移长度与组分间分子作用强度有较好的线性关系。  结论  润滑油难溶于水时,组分间作用力越大,减阻效果越好。且滑移长度不显著依赖于剪切率,润滑油的减阻特性与传统超疏水壁面的减阻特性有相似性。
  • 图  1  计算模型示意图

    Figure  1.  Sketch of computing model

    图  2  $ {G_c} = 1.85 $时,液滴dp和1/r的关系

    Figure  2.  The relationship between pressure difference dp and reciprocal radius 1/r with parameter $ {G_{\rm c}} = 1.85 $

    图  3  计算模型示意图

    Figure  3.  Sketch of computing model

    图  4  不同壁面参数$ {G_{{\rm{ads}},\sigma }} $时的接触角

    Figure  4.  Contact angle with different wall parameters$ {G_{{\rm{ads}},\sigma }} $

    图  5  不同壁面参数$ {G_{ads,1}} $时的接触角

    Figure  5.  Contact angle with different wall parameters$ {G_{\rm ads,1}} $

    图  6  计算模型示意图

    Figure  6.  Sketch of computing model

    图  7  润滑油密度分布图

    Figure  7.  The distribution of lubricant

    图  8  润滑油在上半平面的溶解密度$ {\rho _2} $和组分间作用强度$ {G_c} $的关系图(虚线为辅助视图)

    Figure  8.  The relationship between parameter $ {G_c} $ and lubricant’s dissolved density in half upper space (the dotted line is for auxiliary view)

    图  9  计算模型示意图

    Figure  9.  Sketch of computing model

    图  10  微结构密度分布图

    Figure  10.  The density distribution of the microstructure with microflow

    图  11  计算模型示意图

    Figure  11.  Sketch of computing model

    图  12  $ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $时滑移长度b和组分间作用强度$ {G_c} $的关系(直线为辅助视图)

    Figure  12.  The relationship between slip length b and cohesion force strength $ {G_c} $ with wall parameter $ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $ (the straight line is for auxiliary view)

    图  13  不同组分间作用强度$ {G_c} $时的总密度分布图

    Figure  13.  Total density distribution with different cohesive force strength $ {G_c} $

    图  14  $ {G_c} = 0.1 $$ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $时密度沿y方向分布图($ {\rho _1} $$ {\rho _2} $分别代表组分1、组分2密度)

    Figure  14.  Density value along y axis with parameters $ {G_c} = 0 $$ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $

    图  15  $ {G_c} = 1.8 $${G_{\rm ads,1}} = - {G_{\rm ads,2}} = 0$时密度沿y方向分布图

    Figure  15.  Density value along y axis with parameters $ {G_c} = 1.8 $$ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $

    图  16  $ {G_c} = 1.8 $${G_{\rm ads,1}} = - {G_{\rm ads,2}} = 0$时滑移长度b和剪切速度u的关系

    Figure  16.  The relationship between slip length b and shear velocity u with parameters $ {G_c} = 1.8 $$ {G_{{\rm{ads}},1}} = - {G_{{\rm{ads}},2}} = 0 $

  • [1] TRETHEWAY D C, MEINHART C D. Apparent fluid slip at hydrophobic microchannel walls[J]. Physics of Fluids, 2002, 14(3): L9–L12. doi: 10.1063/1.1432696
    [2] BAUDRY J, CHARLAIX E, TONCK A, et al. Experimental evidence for a large slip effect at a nonwetting fluid-solid interface[J]. Langmuir, 2001, 17(17): 5232–5236. doi: 10.1021/la0009994
    [3] BONACCURSO E, BUTT H J, CRAIG V S J. Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system[J]. Physical Review Letters, 2003, 90(14): 144501. doi: 10.1103/PhysRevLett.90.144501
    [4] 吴承伟, 马国军, 周平. 流体流动的边界滑移问题研究进展[J]. 力学进展, 2008, 38(3): 265–282. doi: 10.3321/j.issn:1000-0992.2008.03.001

    WU C W, MA G J, ZHOU P. A review of the study on the boundary slip problems of fluid flow[J]. Advances in Mechanics, 2008, 38(3): 265–282 (in Chinese). doi: 10.3321/j.issn:1000-0992.2008.03.001
    [5] VINOGRADOVA O I, YAKUBOV G E. Dynamic effects on force measurements. 2. lubrication and the atomic force microscope[J]. Langmuir, 2003, 19(4): 1227–1234. doi: 10.1021/la026419f
    [6] VINOGRADOVA O I. Implications of hydrophobic slippage for the dynamic measurements of hydrophobic forces[J]. Langmuir, 1998, 14(10): 2827–2837. doi: 10.1021/la970332q
    [7] BONACCURSO E, KAPPL M, BUTT H J. Hydrodynamic force measurements: boundary slip of water on hydrophilic surfaces and electrokinetic effects[J]. Physical Review Letters, 2002, 88(7): 076103. doi: 10.1103/PhysRevLett.88.076103
    [8] JOSEPH P, TABELING P. Direct measurement of the apparent slip length[J]. Physical Review E, 2005, 71(3): 035303. doi: 10.1103/PhysRevE.71.035303
    [9] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟[J]. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701

    HUANG Q G, PAN G, SONG B W. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces[J]. Acta Physica Sinica, 2014, 63(5): 054701 (in Chinese). doi: 10.7498/aps.63.054701
    [10] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815–1819. doi: 10.1103/PhysRevE.47.1815
    [11] SHAN X W, CHEN H D. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4): 2941–2948. doi: 10.1103/PhysRevE.49.2941
    [12] WANG K, ZHANG Y, YU Y, et al. Simulation of boundary slip on a liquid-solid surface based on the lattice Boltzmann method[J]. Science Asia, 2015, 41(2): 130–135. doi: 10.2306/scienceasia1513-1874.2015.41.130
    [13] 任刘珍, 胡海豹, 宋保维, 等. 超疏水表面水下减阻研究进展[J]. 数字海洋与水下攻防, 2020, 3(3): 204–211.

    REN L Z, HU H B, SONG B W, et al. Research on underwater drag reduction of superhydrophobic surface[J]. Digital Ocean & Underwater Warfare, 2020, 3(3): 204–211 (in Chinese).
    [14] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律[J]. 力学进展, 2016, 46(1): 179–225.

    LV P Y, XUE Y H, DUAN H L. Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces[J]. Advances in Mechanics, 2016, 46(1): 179–225 (in Chinese).
    [15] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature, 2011, 477(7365): 443–447. doi: 10.1038/nature10447
    [16] SOLOMON B R, KHALIL K S, VARANASI K K. Drag reduction using lubricant-impregnated surfaces in viscous laminar flow[J]. Langmuir, 2014, 30(36): 10970–10976. doi: 10.1021/la5021143
    [17] ROSENBERG B J, VAN BUREN T, FU M K, et al. Turbulent drag reduction over air- and liquid-impregnated surfaces[J]. Physics of Fluids, 2016, 28(1): 015103. doi: 10.1063/1.4939272
    [18] CHANG J, JUNG T, CHOI H, et al. Predictions of the effective slip length and drag reduction with a lubricated micro-groove surface in a turbulent channel flow[J]. Journal of Fluid Mechanics, 2019, 874: 797–820. doi: 10.1017/jfm.2019.468
    [19] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3): 511–525. doi: 10.1103/PhysRev.94.511
    [20] MARTYS N S, CHEN H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method[J]. Physical Review E, 1996, 53(1): 743–750. doi: 10.1103/PhysRevE.53.743
    [21] ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model[J]. Physics of Fluids, 1997, 9(6): 1591–1598. doi: 10.1063/1.869307
    [22] HUANG H, THORNE D T JR, SCHAAP M G, et al. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models[J]. Physical Review E, 2007, 76(6): 066701. doi: 10.1103/PhysRevE.76.066701
    [23] GUO Z L, ZHENG C G, SHI B C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4): 366–374. doi: 10.1088/1009-1963/11/4/310
  • 加载中
图(16)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回