留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

破冰船连续破冰的冰阻力预报

陈锐 黄武刚 陈晓璐 康美泽

陈锐, 黄武刚, 陈晓璐, 等. 破冰船连续破冰的冰阻力预报[J]. 中国舰船研究, 2021, 17(X): 1–9 doi: 10.19693/j.issn.1673-3185.02164
引用本文: 陈锐, 黄武刚, 陈晓璐, 等. 破冰船连续破冰的冰阻力预报[J]. 中国舰船研究, 2021, 17(X): 1–9 doi: 10.19693/j.issn.1673-3185.02164
CHEN R, HUANG W G, CHEN X L, et al. Prediction of ice resistance of icebreaker during continuous icebreaking[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–9 doi: 10.19693/j.issn.1673-3185.02164
Citation: CHEN R, HUANG W G, CHEN X L, et al. Prediction of ice resistance of icebreaker during continuous icebreaking[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–9 doi: 10.19693/j.issn.1673-3185.02164

破冰船连续破冰的冰阻力预报

doi: 10.19693/j.issn.1673-3185.02164
详细信息
    作者简介:

    陈锐,男,1979年生,硕士,高级工程师

    陈晓璐,女,1995年生,硕士,助理工程师

    通信作者:

    陈晓璐

  • 中图分类号: U661.3

Prediction of ice resistance of icebreaker during continuous icebreaking

  • 摘要:   目的  为了准确评估破冰船在平整冰区航行时连续破冰过程中所受的冰阻力,同时了解不同预报方法的特点,采用经验公式法、数值模拟法以及船模试验法,对破冰船在平整冰中连续航行时的冰阻力进行预报。  方法  使用非线性有限元软件DYNA,分别基于传统有限元与黏聚单元法构造冰层数值模拟模型,模拟平整冰与破冰船相互作用时发生的弯曲断裂以及相互作用的过程。同时,采用经验公式法,用3种不同的经验公式进行冰阻力计算,对影响经验公式法预报结果的参数进行敏感性分析。  结果  研究发现:冰阻力随航速、冰厚度以及弯曲强度的增大呈上升趋势,其中冰厚对冰阻力的影响最大。3种经验公式中,Lindqvist公式的预报结果与船模试验结果更为接近,而Vance和Lewis公式更为保守。传统有限元与黏聚单元法在冰厚较小的情况下,冰阻力预报结果更准确,冰厚较大时误差较大,约25%。在冰厚较小航速较高的情况下,黏聚单元法预报的冰阻力值较传统有限元方法更为准确,与船模试验结果相比精度误差在10%以内。  结论  在实际的冰阻力预报中,可结合经验公式法与数值模拟法,兼顾预报结果的准确性与高效性。
  • 图  1  不同工况下经验公式预报冰阻力的比较

    Figure  1.  Comparison of the results obtained with empirical formula under different conditions

    图  2  参数敏感性分析

    Figure  2.  Parameter sensitivity analysis

    图  3  船模和平整冰的网格划分

    Figure  3.  Mesh patterns of the model and level ice

    图  4  冰阻力时历曲线

    Figure  4.  Time history of ice resistance

    图  5  黏聚单元法建立的冰层模型

    Figure  5.  Level ice model constructed by cohesive element method

    图  6  工程中最常用的3种 TSL曲线[10]

    Figure  6.  Three kinds of most commonly used TSL curves in engineering

    图  7  冰厚0.067 m下的数值模拟

    Figure  7.  Numerical simulations with 0.067 m ice thickness

    图  8  模拟环境条件断面与天然结构对比图

    Figure  8.  Comparison of the simulation condition and realistic condition

    图  9  冰阻力模型试验

    Figure  9.  Model test in the towing tank

    图  10  不同方法所得结果的对比图

    Figure  10.  Comparison of the error based on different methods

    表  1  经验公式计算所需参数

    Table  1.   Main parameters required by calculation of ice resistance formulas

    参数VanceLewisLindqvist数值
    ${\rho }_{_\mathrm{W} }$/(kg·m−31 025
    $ {\rho }_{\mathrm{i}} $/(kg·m−3930
    g/(m·s−29.81
    $ {\sigma }_{\mathrm{f}} $/kPa900
    $ \mu $0.05
    a/(o)20
    c/(o)36
    E/GPa2
    $ \nu $0.3
    T/m8.076
    L/m131
    B/m26
    下载: 导出CSV

    表  2  经验公式计算结果

    Table  2.   Results of ice resistance formulas calculation

    ${\sigma }_{\mathrm{f}}$/kPa$ {h}_{\mathrm{i}} $ /mV /kn$ {R}_{\mathrm{I}} $/MN
    LindqvistVanceLewis
    9001.511.4153.1343.094
    9001.521.6223.2223.463
    9001.531.8283.3113.832
    9001.542.0353.3994.201
    900212.1775.5165.145
    900222.4695.6185.637
    900232.7615.7216.129
    900243.0535.8236.621
    9002.513.0688.5747.705
    9002.523.4528.6888.320
    9002.533.8368.8028.935
    9002.544.2208.9169.550
    下载: 导出CSV

    表  3  船模的主要尺度

    Table  3.   Main dimensions of the ship model

    尺度参数原型值模型值
    La/m1404.667
    L/m131.04.367
    $ {B}_{\mathrm{w}} $/m25.80.860
    T/m8.0760.269
    $\varDelta$/t18 5000.685
    下载: 导出CSV

    表  4  数值模拟工况

    Table  4.   Different simulation conditions

    原型T /m模型T /m原型$ {h}_{\mathrm{i}} $/m模型$ {h}_{\mathrm{i}} $/m原型V/kn模型V/ (m·s−1)
    8.0760.269 1.50.05020.188
    8.0760.2691.50.05030.282
    8.0760.2691.50.05040.376
    8.0760.2692.00.06720.188
    8.0760.2692.00.06730.282
    8.0760.2692.00.06740.376
    8.0760.2692.50.08320.188
    8.0760.2692.50.08330.282
    8.0760.2692.50.08340.376
    下载: 导出CSV

    表  5  冰体材料参数

    Table  5.   Material parameters of the ice

    材料参数
    $ \rho $/(kg·m-3SM/
    GPa
    SIGY /MPaETAN /MPaBULK /
    GPa
    EPFPRF /MPa
    数值9302.22.124.265.260.35−0.6
    下载: 导出CSV

    表  6  材料参数

    Table  6.   Material parameters of the ship shell and ice

    船壳实体冰单元黏聚单元
    参数数值参数数值参数数值
    $ \rho $/(kg·m−37850$ \rho $/(kg·m−3930$ \rho $/(kg·m−3930
    G/GPa200G/GPa2G/GPa2
    PR0.33S/MPa2.12TS/MPa0.8
    ETAN/GPa4.26SS/MPa0.9
    BULK/GPa5.26$ {E}_{n} $/(J·m−280
    $ {E}_{s} $/(J·m−280
    TSL曲线形式Linear
    下载: 导出CSV

    表  7  各方法所得冰阻力汇总

    Table  7.   Results of ice forces obtained by different methods

    $ {h}_{\mathrm{i}} $ /mV /kn$ {R}_{\mathrm{I}} $/MN
    船模
    试验
    LindqvistVanceLewis传统
    有限元法
    黏聚
    单元法
    1.521.8661.6223.2223.4631.7961.481
    1.531.9331.8283.3123.8322.1831.886
    1.542.1192.0353.3994.2012.4411.952
    223.0972.4695.6185.6372.2702.790
    233.3132.7615.7216.1293.0552.971
    243.9503.0535.8236.6213.3683.861
    2.524.3683.4528.6888.3203.1633.428
    2.534.7613.8368.8028.9353.6383.544
    2.545.6134.2208.9169.5504.2563.959
    下载: 导出CSV
  • [1] 王超, 韩康, 汪春辉, 等. 冰区航行船舶推进器特殊性分析[J]. 中国舰船研究, 2019, 14(2): 1–7. doi: 10.19693/j.issn.1673-3185.01340

    WANG C, HAN K, WANG C H, et al. Analysis on the particularity of propulsor of ice-going ships[J]. Chinese Journal of Ship Research, 2019, 14(2): 1–7 (in Chinese). doi: 10.19693/j.issn.1673-3185.01340
    [2] 王超, 封振, 李兴, 等. 航行于碎冰区船舶冰阻力与冰响应探析[J]. 中国舰船研究, 2018, 13(1): 73–78. doi: 10.3969/j.issn.1673-3185.2018.01.011

    WANG C, FENG Z, LI X, et al. Analysis on ice resistance and ice response of ships sailing in brash ice[J]. Chinese Journal of Ship Research, 2018, 13(1): 73–78 (in Chinese). doi: 10.3969/j.issn.1673-3185.2018.01.011
    [3] LINDQVIST G. A straightforward method for calculation of ice resistance of ships[C]//The 10th Intl Conference, Port and Ocean Engineering Under Arctic Conditions. Luleaa, Sweden, Proc, 1989: 12-16.
    [4] VANCE G P. Analysis of the performance of a 140-foot great lakes icebreaker: USCGC Katmai Bay[R]. Hanover, N.H.: The Laboratory, 1980.
    [5] LEWIS J W, DEBORD F W, BULAT V A. Resistance and propulsion of ice worthy ships[J]. Transactions of SNAME, 1982, 90: 249–276.
    [6] 肖波, 何炎平, 蒋如宏. 破冰船的破冰能力估算方法初探[J]. 江苏船舶, 2001, 18(3): 7–9. doi: 10.3969/j.issn.1001-5388.2001.03.003

    XIAO B, HE Y P, JIANG R H. A primary exploration on the method of estimation the ability of icebreaker[J]. Jiangsu Ship, 2001, 18(3): 7–9 (in Chinese). doi: 10.3969/j.issn.1001-5388.2001.03.003
    [7] RISKA K, WILHELMSON M, ENGLUND K, et al. Performance of merchant vessels in the baltic: Research Report No. 52[R]. Helsinki, Finland: Helsinki University of Technology, Ship Laboratory, Winter Navigation Research Board, Espoo, 1997.
    [8] ZHAN D X, AGAR D, HE M Q, et al. Numerical Simulation of Ship Maneuvering in Pack Ice[C]//Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China: ASME, 2010: 855-862.
    [9] 季顺迎, 李紫麟, 李春花, 等. 碎冰区海冰与船舶结构相互作用的离散元分析[J]. 应用力学学报, 2013, 30(4): 520–526. doi: 10.11776/cjam.30.04.D032

    JI S Y, LI Z L, LI C H, et al. Analysis of interaction between ice floe and ship hull with discrete element method in broken-ice field[J]. Chinese Journal of Applied Mechanics, 2013, 30(4): 520–526 (in Chinese). doi: 10.11776/cjam.30.04.D032
    [10] 王峰. 基于粘聚单元模型的海洋结构物与平整冰相互作用数值研究[D]. 上海: 上海交通大学, 2019.

    WANG F. Numerical research on the interactions between marine structures and level ice based on cohesive element model[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
    [11] 任奕舟, 邹早建. 破冰船在冰层中连续破冰时的冰阻力预报[J]. 上海交通大学学报, 2016, 50(8): 1152–1157.

    REN Y Z, ZOU Z J. Ice resistance prediction of an icebreaker during continuous icebreaking in level ice[J]. Journal of Shanghai Jiaotong University, 2016, 50(8): 1152–1157 (in Chinese).
    [12] 何菲菲. 破冰船破冰载荷与破冰能力计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.

    HE F F. A computational method for ice-breaking loads and capability of icebreaker[D]. Harbin: Harbin Engineering University, 2010 (in Chinese).
    [13] HALLQUIST J O. LS-DYNA® theory manual[J]. Livermore Software Technology Corporation, 2006, 3: 25–31.
    [14] 何文心. 破冰船艏部冰载荷计算及结构强度研究[D]. 镇江: 江苏科技大学, 2017.

    HE W X. Ice load calculation and structure strength research of icebreaker bow[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017 (in Chinese).
    [15] 白旭, 陶冶, 周利, 等. 破冰船直航破冰载荷的有限元数值模拟[C]//第十八届中国海洋(岸)工程学术讨论会论文集(上). 舟山: 海洋出版社, 2017.

    BAI X, TAO Y, ZHOU L, et al. Finite element numerical simulation of ice-breaking load of icebreaker in direct voyage[C]//Proceedings of the 18th China Ocean (Shore) Engineering Symposium. Zhoushan: Ocean Press, 2017 (in Chinese).
    [16] NI B Y, HUANG Q. Analysis of ice resistance in ice-structure interaction based on the cohesive element method[C]//Proceedings of the Thirtieth (2020) International Ocean and Polar Engineering Conference. Shanghai, China: International Society of Offshore and Polar Engineers (ISOPE), 2020: 11-16.
    [17] 张健, 王凯民, 许俊华, 等. 基于数值仿真与经验公式的船舶破冰阻力预报[J]. 舰船科学技术, 2019, 41(8): 1–6. doi: 10.3404/j.issn.1672-7649.2019.08.001

    ZHANG J, WANG K M, XU J H, et al. Prediction of ice breaking resistance of ship based on numerical simulation and empirical formulation[J]. Ship Science and Technology, 2019, 41(8): 1–6 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.08.001
    [18] 郭春雨, 李夏炎, 谢畅, 等. 冰区航行船舶阻力预报方法[J]. 哈尔滨工程大学学报, 2015, 36(7): 899–905.

    GUO C Y, LI X Y, XIE C, et al. Prediction method for icebreaker resistance[J]. Journal of Harbin Engineering University, 2015, 36(7): 899–905 (in Chinese).
    [19] 王庆凯. 北极航道融冰期海冰物理和力学工程参数研究[D]. 大连: 大连理工大学, 2019.

    WANG Q K. Study on the physical and mechanical engineering parameters of sea ice during melt season for arctic passage[D]. Dalian: Dalian University of Technology, 2019. (in Chinese).
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  27
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-30
  • 修回日期:  2021-05-05
  • 网络出版日期:  2021-09-01

目录

    /

    返回文章
    返回