留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合动力船舶能量管理研究综述

侯慧 甘铭 吴细秀 谢坤 范则阳

侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 0(X): 1–15 doi: 10.19693/j.issn.1673-3185.02133
引用本文: 侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 0(X): 1–15 doi: 10.19693/j.issn.1673-3185.02133
HOU H, GAN M, WU X X, et al. Review on energy management of hybrid ships[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–15 doi: 10.19693/j.issn.1673-3185.02133
Citation: HOU H, GAN M, WU X X, et al. Review on energy management of hybrid ships[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–15 doi: 10.19693/j.issn.1673-3185.02133

混合动力船舶能量管理研究综述

doi: 10.19693/j.issn.1673-3185.02133
详细信息
    作者简介:

    侯慧,女,1981年生,博士,副教授。研究方向:船舶能量管理与能源互联网等。E-mail:77476630@qq.com

    甘铭,男,1998年生,硕士生。研究方向:船舶能量管理等。E-mail:szganming@126.com

    吴细秀,女,1976年生,博士,副教授。研究方向:船舶能量管理与能源互联网等。E-mail:wuxixiu@163.com

    通信作者:

    甘铭

  • 中图分类号: U664.1

Review on energy management of hybrid ships

  • 摘要: 在世界各国愈加重视船舶节能减排的大背景下,混合动力船舶节能减排的优势日益突显,而能量管理是使混合动力船舶多种能源高效协调工作,是在保证动力性的前提下实现节能减排的关键。针对混合动力船舶能量管理的最新研究进展及研究现状,首先,从可靠性目标、经济性目标及环保性目标这3个角度对能量管理目标进行总结;然后,从规则型和优化型角度,对比能量管理策略,全面和深入地分析现有能量管理策略研究的优缺点及其应用条件;最后,根据现有研究存在的不足,展望混合动力船舶能量管理的未来研究方向。
  • 图  1  混合动力船舶能量管理策略

    Figure  1.  Energy management strategy of hybrid ships

    表  1  混合动力船舶能量管理策略的优缺点

    Table  1.   Advantages and disadvantages of energy management strategy for hybrid ships

    能量管理策略优点缺点
    确定规则简单有效,实时性好依赖工程经验,难以适应实际非线性时变系统
    模糊规则计算量小,适应实际非线性时变系统依赖工程经验,主观性强,控制性能较差
    全局优化全局最优需要提前知道历史工况,难以实时应用
    实时优化实时性好,优化性好不是全局最优
    下载: 导出CSV
  • [1] 刘飞. EEDI对船舶总体设计影响分析研究[D]. 大连: 大连理工大学, 2011.

    LIU F. The research of EEDI impact on the basic ship design[D]. Dalian: Dalian University of Technology, 2011 (in Chinese).
    [2] IMO. Marine Environment Protection Committee–62nd session[EB/OL]. (2011-07-15)[2021-02-07]. https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MEPC-62nd-session.aspx.
    [3] 俞万能, 廖卫强, 杨荣峰, 等. 基于太阳能锂电池及柴油发电机组的多能源(光柴储)船舶微网能量控制系统研发[J]. 中国造船, 2017, 58(1): 170–176.

    YU W N, LIAO W Q, YANG R F, et al. Development of multi-energy control system for marine micro-grid based on photovoltaic-diesel generator-battery[J]. Shipbuilding of China, 2017, 58(1): 170–176 (in Chinese).
    [4] 刘子杨, 翁方龙, 李玉生, 等. 燃料电池技术在船舶电力推进系统中的应用分析[J]. 船电技术, 2019, 39(11): 6–11.

    LIU Z Y, WENG F L, LI Y S, et al. Analysis of fuel cell technology application in marine electric propulsion system[J]. Marine Electric & Electronic Technology, 2019, 39(11): 6–11 (in Chinese).
    [5] 郭燚, 于士振, 郭将驰, 等. 舰船中压直流电力系统的混合储能管理策略仿真分析[J]. 中国舰船研究, 2019, 14(2): 126–136, 143.

    GUO Y, YU S Z, GUO J C, et al. Simulation analysis on hybrid energy storage management strategy in warship medium voltage DC power system[J]. Chinese Journal of Ship Research, 2019, 14(2): 126–136, 143 (in Chinese).
    [6] ZAHEDI B, NORUM L E, LUDVIGSEN K B. Optimized efficiency of all-electric ships by dc hybrid power systems[J]. Journal of Power Sources, 2014, 255: 341–354. doi: 10.1016/j.jpowsour.2014.01.031
    [7] 吴骏, 方世源, 吴国栋, 等. 含大功率脉冲性负荷的船舶供电系统设计[J]. 船舶工程, 2019, 41(6): 63–71, 124.

    WU J, FANG S Y, WU G D, et al. Design of ship power supply with high power pulsed loads[J]. Ship Engineering, 2019, 41(6): 63–71, 124 (in Chinese).
    [8] STONE P, OPILA D F, PARK H, et al. Shipboard power management using constrained nonlinear model predictive control[C]//2015 IEEE Electric Ship Technologies Symposium (ESTS). Alexandria, VA, USA: IEEE, 2015: 1-7.
    [9] LASHWAY C R, ELSAYED A T, MOHAMMED O A. Hybrid energy storage management in ship power systems with multiple pulsed loads[J]. Electric Power Systems Research, 2016, 141: 50–62. doi: 10.1016/j.jpgr.2016.06.031
    [10] KUZNETSOV S B. Hybrid energy storage module for large-scale ship pulsed power[C]//2017 IEEE Electric Ship Technologies Symposium (ESTS). Arlington, VA, USA: IEEE, 2017: 238-245.
    [11] 孙玉伟, 胡克容, 严新平, 等. 新能源船舶混合储能系统关键技术问题综述[J]. 中国造船, 2018, 59(1): 226–236.

    SUN Y W, HU K R, YAN X P, et al. A review on research in key technologies of hybrid energy storage system in new energy ships[J]. Shipbuilding of China, 2018, 59(1): 226–236 (in Chinese).
    [12] 张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(2): 127–136.

    ZHANG Z H, CHEN H, GAO H B, et al. Energy management strategies for fuel cell hybrid ships based on real-time wavelet transform[J]. Chinese Journal of Ship Research, 2020, 15(2): 127–136 (in Chinese).
    [13] 李维波, 郝春昊, 高佳俊, 等. 舰船综合电力系统发展综述[J]. 中国舰船研究, 2020, 15(6): 1–11.

    LI W B, HAO C H, GAO J J, et al. Overview of the development of shipboard integrated power system[J]. Chinese Journal of Ship Research, 2020, 15(6): 1–11 (in Chinese).
    [14] HUANG K, CARTES D A, SRIVASTAVA S K. A multiagent-based algorithm for ring-structured shipboard power system reconfiguration[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2007, 37(5): 1016–1021. doi: 10.1109/TSMCC.2007.900643
    [15] DAVEY K, LONGORIA R, SHUTT W, et al. Reconfiguration in shipboard power systems[C]//American Control Conference. New York, NY, USA: IEEE, 2007: 4750-4755.
    [16] SRIVASTAVA S, BUTLER-BURRY K L. Expert-system method for automatic reconfiguration for restoration of shipboard power systems[J]. IEE Proceedings-Generation, Transmission and Distribution, 2006, 153(3): 253–260. doi: 10.1049/ip-gtd:20045185
    [17] SOLANKI J M, SCHULZ N N. Using intelligent multi-agent systems for shipboard power systems reconfiguration[C]//Proceedings of the 13th International Conference on, Intelligent Systems Application to Power Systems. Arlington, VA, USA: IEEE, 2005.
    [18] KANELLOS F D, TSEKOURAS G J, HATZIARGYRIOU N D. Optimal demand-side management and power generation scheduling in an all-electric ship[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1166–1175. doi: 10.1109/TSTE.2014.2336973
    [19] 孙小明. 小型船舶风光柴蓄混合发电系统优化配置研究[D]. 大连: 大连海事大学, 2010.

    SUN X M. Research on matching optimization of wind-solar-diesel-battery hybrid system of small ship[D]. Dalian: Dalian Maritime University, 2010 (in Chinese).
    [20] 李严. 风光互补发电系统在海洋渔船中的应用[D]. 海口: 海南大学, 2017.

    LI Y. Apply to wind and photovoltaic generation independent power system on marine fishing boats[D]. Haikou: Hainan University, 2017 (in Chinese).
    [21] 张弛. 光伏功率预测与船舶微电网优化调度研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    ZHANG C. Photovoltaic power forecasting and ship microgrid optimization scheduling storage[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
    [22] 姚池. 全电驱船舶电网能量优化管理策略研究[D]. 重庆: 重庆大学, 2017.

    YAO C. Power management optimization in all-electric ship micro-grid[D]. Chongqing: Chongqing University, 2017 (in Chinese).
    [23] WEN S L, LAN H, HONG Y Y, et al. Allocation of ESS by interval optimization method considering impact of ship swinging on hybrid PV/diesel ship power system[J]. Applied Energy, 2016, 175: 158–167. doi: 10.1016/j.apenergy.2016.05.003
    [24] LAN H, WEN S L, HONG Y Y, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy, 2015, 158: 26–34. doi: 10.1016/j.apenergy.2015.08.031
    [25] WANG L, CHEN S S, ZHENG G Z, et al. Installation of a 400-W wind turbine generator on a commercial fishing boat to achieve energy saving[C]//IEEE PES General Meeting. Minneapolis, MN, USA: IEEE, 2010: 1–6.
    [26] AHMED S, CASTELLAZZI A, WILLIAMS A. Technologies, feasibility, and management strategies for on-board multi-source energy networks[C]//IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC). Florence, Italy: IEEE, 2016: 1-6.
    [27] 张钧存. 风能发电在远洋货船上应用的研究[J]. 机电设备, 2001(6): 13–18.

    ZHANG J C. A study on the application of wind energy conversion system on an ocean cargo ship[J]. Mechanical and Electrical Equipment, 2001(6): 13–18 (in Chinese).
    [28] LI Z M, XU Y, FANG S D, et al. Robust coordination of a hybrid AC/DC multi-energy ship microgrid with flexible voyage and thermal loads[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 2782–2793. doi: 10.1109/TSG.2020.2964831
    [29] 庞水, 林叶锦, 张均东, 等. 柴电混合动力船舶能量分配优化方法[J]. 船海工程, 2020, 49(3): 106–111.

    PANG S, LIN Y J, ZHANG J D, et al. On power distribution optimization method for diesel-electric hybrid-driven ship[J]. Ship & Ocean Engineering, 2020, 49(3): 106–111 (in Chinese).
    [30] ZHANG C, JIA B Z. The research of power allocation in diesel-electric hybrid propulsion system[C]//2019 Chinese Automation Congress (CAC). Hangzhou, China: IEEE, 2019: 3664-3668.
    [31] 高迪驹, 张伟, 王旭阳, 等. 基于模型预测控制的混合动力船舶能量控制策略[J]. 上海海事大学学报, 2018, 39(2): 60–65.

    GAO D J, ZHANG W, WANG X Y, et al. Energy control strategy for hybrid power ships based on model predictive control[J]. Journal of Shanghai Maritime University, 2018, 39(2): 60–65 (in Chinese).
    [32] 兰熙, 沈爱弟, 高迪驹, 等. 混合动力船舶能量管理系统的最优控制[J]. 电源技术, 2016, 40(9): 1859–1862.

    LAN X, SHEN A D, GAO D J, et al. Optimal control of hybrid ship energy management system[J]. Chinese Journal of Power Sources, 2016, 40(9): 1859–1862 (in Chinese).
    [33] ZHANG Z H, GUAN C, LIU Z Y. Real-time optimization energy management strategy for fuel cell hybrid ships considering power sources degradation[J]. IEEE Access, 2020, 8: 87046–87059. doi: 10.1109/ACCESS.2020.2991519
    [34] KANELLOS F D. Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems[J]. IEEE Transactions on Power Systems, 2014, 29(1): 330–339. doi: 10.1109/TPWRS.2013.2280064
    [35] IMO. Guideline for voluntary use of the ship energy efficiency operational indicator (EEOI)[DB/OL]. [2021-02-07]. https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Circ-684.pdf.
    [36] 高迪驹, 沈爱弟, 褚建新, 等. 混合动力船舶的能量管理与控制策略[J]. 上海海事大学学报, 2015, 6(1): 70–74.

    GAO D J, SHEN A D, CHU J X, et al. Energy management and control strategy for hybrid electric ships[J]. Journal of Shanghai Maritime University, 2015, 6(1): 70–74 (in Chinese).
    [37] 袁裕鹏, 王凯, 严新平. 混合动力船舶能量管理控制策略设计与仿真[J]. 船海工程, 2015, 44(2): 95–98.

    YUAN Y P, WANG K, YAN X P. Design and simulate of energy management control strategy for hybrid ship[J]. Ship & Ocean Engineering, 2015, 44(2): 95–98 (in Chinese).
    [38] TANG R L, LI X, LAI J G. A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization[J]. Applied Energy, 2018, 228: 254–264. doi: 10.1016/j.apenergy.2018.06.092
    [39] 刘乐, 高海波, 缪光辉, 等. 基于PSO优化模糊控制的船舶能量管理策略研究[J]. 武汉理工大学学报, 2017, 39(3): 32–37.

    LIU L, GAO H B, MIU G H, et al. Study of marine energy management strategy based on fuzzy logic controller with particle swarm optimization algorithm[J]. Journal of Wuhan University of Technology, 2017, 39(3): 32–37 (in Chinese).
    [40] ERIKSSON E L V, GRAY E M. Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems–A critical review[J]. Applied Energy, 2017, 202: 348–364. doi: 10.1016/j.apenergy.2017.03.132
    [41] BUKAR A L, TAN C W. A review on stand-alone photovoltaic-wind energy system with fuel cell: system optimization and energy management strategy[J]. Journal of Cleaner Production, 2019, 221: 73–88. doi: 10.1016/j.jclepro.2019.02.228
    [42] YUAN Y P, WANG J X, YAN X P, et al. A review of multi-energy hybrid power system for ships[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110081. doi: 10.1016/j.rser.2020.110081
    [43] WU P, PARTRIDGE J, BUCKNALL R. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships[J]. Applied Energy, 2020, 275: 115258. doi: 10.1016/j.apenergy.2020.115258
    [44] 石英乔, 何彬, 曹桂军, 等. 燃料电池混合动力瞬时优化能量管理策略研究[J]. 汽车工程, 2008, 30(1): 30–35.

    SHI Y Q, HE B, CAO G J, et al. A study on the energy management strategy for fuel cell electric vehicle based on instantaneous optimization[J]. Automotive Engineering, 2008, 30(1): 30–35 (in Chinese).
    [45] 臧壮. 小型内河游艇混合动力系统的设计与研究[D]. 镇江: 江苏科技大学, 2017.

    ZANG Z. The design and research of hybrid power system for small yacht[D]. Zhenjiang: Jiangsu University of Science and Technology, 2017 (in Chinese).
    [46] BEŞIKÇI E B, KECECI T, ARSLAN O, et al. An application of fuzzy-AHP to ship operational energy efficiency measures[J]. Ocean Engineering, 2016, 121: 392–402. doi: 10.1016/j.oceaneng.2016.05.031
    [47] ZHU L S, HAN J G, PENG D K, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]//2014 First International Conference on Green Energy ICGE 2014. Sfax, Tunisia: IEEE, 2014: 107-112.
    [48] 肖能齐, 徐翔, 周瑞平. 船舶柴电混合动力系统能量管理控制策略[J]. 哈尔滨工程大学学报, 2020, 41(1): 153–160.

    XIAO N Q, XU X, ZHOU R P. Energy management and control strategy of ship diesel-electric hybrid power system[J]. Journal of Harbin Engineering University, 2020, 41(1): 153–160 (in Chinese).
    [49] TJANDRA R, WEN S L, ZHOU D H, et al. Optimal sizing of BESS for hybrid electric ship using multi-objective particle swarm optimization[C]//2019 IEEE 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia). Busan, Korea (South): IEEE, 2019: 1460-1466.
    [50] 李红娟, 郭向阳, 刘宏建. 随机动态规划和粒子群嵌套寻优的PHEV能量优化[J]. 机械设计与制造, 2020(7): 150–155.

    LI H J, GUO X Y, LIU H J. PHEV energy optimization based on stochastic dynamic programming and particle swarm nested optimization[J]. Machinery Design & Manufacture, 2020(7): 150–155 (in Chinese).
    [51] 王森, 程春田, 武新宇, 等. 梯级水电站群长期发电优化调度多核并行随机动态规划方法[J]. 中国科学: 技术科学, 2014, 44(2): 209–218. doi: 10.1360/092013-800

    WANG S, CHENG C T, WU X Y, et al. Parallel stochastic dynamic programming for long-term generation operation of cascaded hydropower stations[J]. Scientia Sinica Technologica, 2014, 44(2): 209–218 (in Chinese). doi: 10.1360/092013-800
    [52] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10): 2911–2916.

    GE J K, QIU Y H, WU C M, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10): 2911–2916 (in Chinese).
    [53] SHANG C, SRINIVASAN D, REINDL T. Economic and environmental generation and voyage scheduling of all-electric ships[J]. IEEE Transactions on Power Systems, 2016, 31(5): 4087–4096. doi: 10.1109/TPWRS.2015.2498972
    [54] BOLBOT V, TRIVYZA N L, THEOTOKATOS G, et al. Cruise ships power plant optimisation and comparative analysis[J]. Energy, 2020, 196: 117061. doi: 10.1016/j.energy.2020.117061
    [55] 郑夏, 马良. 一种多目标非线性优化的NSGA-II改进算法[J]. 微电子学与计算机, 2020, 37(7): 47–53.

    ZHENG X, MA L. An Improved NSGA-II algorithm for multi-objective nonlinear optimization[J]. Microelectronics & Computer, 2020, 37(7): 47–53 (in Chinese).
    [56] 杨维, 李歧强. 粒子群优化算法综述[J]. 中国工程科学, 2004, 6(5): 87–94.

    YANG W, LI Q Q. Survey on particle swarm optimization algorithm[J]. Engineering Science, 2004, 6(5): 87–94 (in Chinese).
    [57] TANG R L, WU Z, LI X. Optimal power flow dispatching of maritime hybrid energy system using model predictive control[J]. Energy Procedia, 2019, 158: 6183–6188. doi: 10.1016/j.egypro.2019.01.490
    [58] KANELLOS F D, ANVARI-MOGHADDAM A, GUERRERO J M. A cost-effective and emission-aware power management system for ships with integrated full electric propulsion[J]. Electric Power Systems Research, 2017, 150: 63–75. doi: 10.1016/j.jpgr.2017.05.003
    [59] 印波, 王锡淮, 肖健梅. 基于改进粒子群优化算法的船舶能量管理方案[J]. 中国舰船研究, 2020, 15(6): 37–45.

    YIN B, WANG X H, XIAO J M. Ship energy management scheme based on improved particle swarm optimization algorithm[J]. Chinese Journal of Ship Research, 2020, 15(6): 37–45 (in Chinese).
    [60] LIN C C, PENG H, GRIZZLE J W, et al. Power management strategy for a parallel hybrid electric truck[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6): 839–849. doi: 10.1109/TCST.2003.815606
    [61] YUAN L C W, TJAHJOWIDODO T, LEE G S G, et al. Equivalent consumption minimization strategy for hybrid all-electric tugboats to optimize fuel savings[C]//2016 American Control Conference (ACC). Boston, MA, USA: IEEE, 2016: 6803-6808.
    [62] BASSAM A M, PHILLIPS A B, TURNOCK S R, et al. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship[J]. International Journal of Hydrogen Energy, 2017, 42(1): 623–635. doi: 10.1016/j.ijhydene.2016.08.209
    [63] ZHU J Y, CHEN L, WANG X F, et al. Bi-level optimal sizing and energy management of hybrid electric propulsion systems[J]. Applied Energy, 2020, 260: 114134. doi: 10.1016/j.apenergy.2019.114134
    [64] HOU J, SONG Z Y, HOFMANN H, et al. Adaptive model predictive control for hybrid energy storage energy management in all-electric ship microgrids[J]. Energy Conversion and Management, 2019, 198: 111929. doi: 10.1016/j.enconman.2019.111929
    [65] PARAN S, VU T V, MEZYANI T E, et al. MPC-based power management in the shipboard power system[C]//2015 IEEE Electric Ship Technologies Symposium (ESTS). Alexandria, VA, USA: IEEE, 2015: 14-18.
    [66] YUAN L C W, TJAHJOWIDODO T, LEE G S G, et al. Optimizing fuel savings and power system reliability for all-electric hybrid vessels using Model Predictive Control[C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich, Germany: IEEE, 2017: 1532-1537.
    [67] GONSOULIN D E, VU T V, DIAZ F, et al. Coordinating multiple energy storages using MPC for ship power systems[C]//2017 IEEE Electric Ship Technologies Symposium (ESTS). Arlington, VA, USA: IEEE, 2017: 551-556.
    [68] PARK H, SUN J, PEKAREK S, et al. Real-time model predictive control for shipboard power management using the IPA-SQP approach[J]. IEEE Transactions on Control Systems Technology, 2015, 23(6): 2129–2143. doi: 10.1109/TCST.2015.2402233
    [69] ZOHRABI N, ZAKERI H, ABDELWAHED S. Efficient load management in electric ships: a model predictive control approach[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). Anaheim, CA, USA: IEEE, 2019: 3000-3006.
    [70] 刘张超, 谭琨, 于海洋, 等. 国内船舶柴电混合动力系统发展综述及典型应用案例[J]. 柴油机, 2019, 41(4): 46–49.

    LIU Z C, TAN K, YU H Y, et al. The development of domestic diesel-electric hybrid marine propulsion systems and typical application cases[J]. Diesel Engine, 2019, 41(4): 46–49 (in Chinese).
    [71] MEHSEIN K, NORSIC C, CHAILLOU C, et al. Minimizing secondary pollutant formation through identification of most influential volatile emissions in gasoline exhausts: impact of the vehicle powertrain technology[J]. Atmospheric Environment, 2020, 226: 117394. doi: 10.1016/j.atmosenv.2020.117394
    [72] SILVA C, ROSS M, FARIAS T. Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles[J]. Energy Conversion and Management, 2009, 50(7): 1635–1643. doi: 10.1016/j.enconman.2009.03.036
    [73] KOUBAA R, BACHA S, SMAOUI M, et al. Robust optimization based energy management of a fuel cell/ultra-capacitor hybrid electric vehicle under uncertainty[J]. Energy, 2020, 200: 117530. doi: 10.1016/j.energy.2020.117530
    [74] 彭东恺, 朱礼斯, 韩金刚. 船舶燃料电池-蓄电池混合动力系统能量管理策略及仿真分析[J]. 系统仿真学报, 2014, 26(11): 2797–2802.

    PENG D K, ZHU L S, HAN J G. Simulation of energy management strategy for fuel cell/battery hybrid ship[J]. Journal of System Simulation, 2014, 26(11): 2797–2802 (in Chinese).
    [75] 张泽辉. 混合动力船舶复合电源能量管理策略及容量配置研究[D]. 武汉: 武汉理工大学, 2019.

    ZHANG Z H. Study on sizing and energy management strategy of hybrid energy storage system for hybrid ship[D]. Wuhan: Wuhan University of Technology, 2019 (in Chinese).
    [76] 魏伟, 褚建新, 王帆. 串联式混合动力船舶能源系统运行模式切换策略[J]. 船舶工程, 2016, 38(4): 26–30.

    WEI W, CHU J X, WANG F. Operation mode switching strategy of series hybrid electric ship power system[J]. Ship Engineering, 2016, 38(4): 26–30 (in Chinese).
    [77] 潘海邦, 薛圻蒙, 高迪驹, 等. 串联式混合动力内河船舶参数匹配及控制策略研究[J]. 船舶工程, 2018, 40(3): 55–61.

    PAN H B, XUE Q M, GAO D J, et al. Research on parameter matching and control strategy of series hybrid inland ship[J]. Ship Engineering, 2018, 40(3): 55–61 (in Chinese).
    [78] 严新平. 新能源在船舶上的应用进展及展望[J]. 船海工程, 2010, 39(6): 111–115, 120.

    YAN X P. Progress review of new energy application in ship[J]. Ship & Ocean Engineering, 2010, 39(6): 111–115, 120 (in Chinese).
    [79] 杨诚, 杨祥国, 陈辉, 等. 船舶电力推进系统制动能量回馈利用方法研究[J]. 舰船科学技术, 2015, 37(12): 89–92.

    YANG C, YANG X G, CHEN H, et al. The method of research on ship electric propulsion system using the braking energy feedback[J]. Ship Science and Technology, 2015, 37(12): 89–92 (in Chinese).
    [80] 吴安民, 周伟中. 船舶柴油机余热利用技术研究[J]. 柴油机, 2012, 34(5): 46–49.

    WU A M, ZHOU W Z. Study on waste heat recovery technology of marine diesel engine[J]. Diesel Engine, 2012, 34(5): 46–49 (in Chinese).
    [81] 杨挺, 翟峰, 赵英杰, 等. 泛在电力物联网释义与研究展望[J]. 电力系统自动化, 2019, 43(13): 9–20, 53.

    YANG T, ZHAI F, ZHAO Y J, et al. Explanation and prospect of ubiquitous electric power internet of things[J]. Automation of Electric Power Systems, 2019, 43(13): 9–20, 53 (in Chinese).
    [82] 万辉, 张建雄, 高嵩, 等. 内河船舶大数据关键技术研究[J]. 中国水运, 2017, 38(11): 47–50.

    WAN H, ZHANG J X, GAO S, et al. Research on key technologies of inland ship big data[J]. China Water Transport, 2017, 38(11): 47–50 (in Chinese).
    [83] WICKRAMANAYAKE S, DILUM BANDARA H M N. Fuel consumption prediction of fleet vehicles using machine learning: a comparative study[C]//2016 Moratuwa Engineering Research Conference (MERCon). Moratuwa, Sri Lanka: IEEE, 2016: 90-95.
    [84] TAO Y Q, CHEN Y G. Distributed PV power forecasting using genetic algorithm based neural network approach[C]//2014 International Conference on Advanced Mechatronic Systems. Kumamoto, Japan: IEEE, 2014: 557–560.
    [85] 杨明, 范澍, 韩学山, 等. 基于分量稀疏贝叶斯学习的风电场输出功率概率预测方法[J]. 电力系统自动化, 2012, 36(14): 125–130, 142.

    YANG M, FAN S, HAN X S, et al. Wind farm generation forecast based on componential sparse Bayesian learning[J]. Automation of Electric Power Systems, 2012, 36(14): 125–130, 142 (in Chinese).
    [86] 宋小会, 郭志忠, 郭华平, 等. 一种基于森林模型的光伏发电功率预测方法研究[J]. 电力系统保护与控制, 2015, 43(2): 13–18.

    SONG X H, GUO Z Z, GUO H P, et al. A new forecasting model based on forest for photovoltaic power generation[J]. Power System Protection and Control, 2015, 43(2): 13–18 (in Chinese).
    [87] ZHANG J T, PANG S, TIAN H Q, et al. Siting and sizing of distributed wind generation under active management mode[C]//2010 International Conference on Power System Technology (POWERCON). Hangzhou, China: IEEE, 2010: 1–8.
    [88] NICK M, CHERKAOUI R, PAOLONE M. Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support[J]. IEEE Transactions on Power Systems, 2014, 29(5): 2300–2310. doi: 10.1109/TPWRS.2014.2302020
    [89] LIU Z P, WEN F S, LEDWICH G. Optimal siting and sizing of distributed generators in distribution systems considering uncertainties[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2541–2551. doi: 10.1109/TPWRD.2011.2165972
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  70
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-09
  • 修回日期:  2021-02-17
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回