Experimental study on wheel load distribution characteristics of truck tires
-
摘要:
目的 旨在探究轮印载荷在加筋板上的分布特性。 方法 首先开展不同载荷工况下的加筋板轮压试验,获取载重轮胎与铝合金加筋板的接触面积和接触压力的变化形式,总结轮印载荷的基本分布规律。其次,通过试验数据和结果分析提出轮印载荷分布特性的二次多项式表达形式,并给出不同载荷下多项式参数的确定方法。最后,对比分析加筋板数值仿真与试验的应力响应结果。 结果 获得了载重轮胎在甲板上的载荷分布规律和表达方法。验证了所提轮印载荷分布形式的合理性。 结论 研究有助于对轮印载荷分布特性的理解,并对工程实际应用具有一定的参考意义。 Abstract:Objectives This paper seeks to obtain the wheel load distribution characteristics of a truck tire on a stiffener plate. Methods First, stiffener plate experiments are carried out under wheel pressure with different axle load cases; the contact area and contact pressure changes between the tire and aluminum alloy stiffened plate are obtained; and the basic distribution law of wheel load is summarized in combination with the relevant literature. Second, based on the experimental results, a second-order polynomial hypothesis for wheel load distribution characteristics is given, and the parameters in the polynomial under different axle load cases are determined according to the experimental data. Finally, the stress response of the aluminum alloy stiffener plate is compared with a combination of numerical simulation and experimental results. Results The load distribution characteristics of a truck tire on a stiffener plate and the expressional method are obtained, and the rationality of the proposed wheel load distribution characteristics is proven. Conclusion The study of wheel load in this article is helpful for understanding the characteristics of wheel load distribution on stiffener plates, and provides certain references for engineering applications. -
Key words:
- wheel load /
- truck tire /
- distribution characteristic /
- stiffener plate
-
表 1 工况表
Table 1. Load cases
工况1 工况2 工况3 工况4 载荷/t 2 3 4 5 表 2 轮印面积、尺寸与载荷的关系
Table 2. Relationship between tire footprint area, size and load
载荷
W/t轮印面积
S/m2有效面积
λS/m2矩形轮印
尺寸(2B′×2L′)/m2有效矩形轮印
尺寸(2B×2L)/m22 0.0360 0.023 04 0.27×0.133 0.216×0.107 3 0.0449 0.028 74 0.27×0.166 0.216×0.133 4 0.0540 0.034 56 0.27×0.200 0.216×0.160 5 0.0648 0.041 47 0.27×0.240 0.216×0.192 表 3 不同载荷下各压力测点试验数据结果
Table 3. Testing results of each pressure point under different load cases
载荷W/t 压力/MPa 测点1 测点2 测点3 测点4 测点5 测点6 测点7 测点8 2 2.010 1.439 1.092 0.321 0.485 0.285 0.748 0.765 3 2.114 1.552 1.170 0.356 0.532 0.389 0.904 0.840 4 2.219 1.804 1.200 0.39 0.485 0.496 1.044 0.853 5 2.334 1.978 1.261 0.373 0.565 0.567 1.217 0.899 表 4 不同载荷下各压力测点修正数据结果
Table 4. Modified results of each pressure point under different load cases
载荷W/t 压力/MPa 测点1 测点2 测点3 测点4 测点5 测点6 测点7 测点8 2 0.77 1.09 0.79 0.32 0.79 0.77 1.09 0.77 3 1.25 1.23 0.87 0.36 0.83 1.25 1.23 0.84 4 1.36 1.42 0.90 0.39 0.85 1.36 1.42 0.85 5 1.45 1.60 0.96 0.37 0.87 1.45 1.60 0.90 表 5 不同载荷下各应变测点转换的Mises应力
Table 5. Mises stress of each strain point under different load cases
载荷W/t Mises压力/MPa 测点1 测点2 测点3 测点4 测点5 测点6 测点7 测点8 测点9 2 13.01 16.57 12.67 48.68 149.35 45.24 8.14 6.75 7.47 3 18.50 22.94 17.94 68.30 168.00 63.96 7.75 3.28 5.85 4 23.53 28.42 22.76 91.83 168.00 87.44 6.22 9.99 4.37 5 28.26 33.34 27.23 119.82 168.00 114.77 5.94 17.59 7.92 表 6 不同载荷下测点7,8,9的试验应变
Table 6. Tested strain data of measuring points 7, 8, 9 under different load cases
载荷/t 测点7试验应变/μm 测点8试验应变/μm 测点9试验应变/μm 0° 45° 90° 0° 45° 90° 0° 45° 90° 2 −79.77 −47.70 −68.77 −72.36 −70.82 −55.33 −69.48 −90.35 −68.47 3 −50.06 −65.89 −93.07 23.19 −18.09 −43.14 −26.99 −47.28 −76.18 4 −6.48 −68.05 −83.31 142.19 42.51 −48.90 35.19 27.11 −40.12 5 39.96 −51.74 −51.81 255.11 99.75 −56.80 96.03 95.76 2.17 表 7 不同载荷下位移测点结果
Table 7. Displacement results under different load cases
载荷W/t 2 3 4 5 位移/mm 2.63 3.56 4.34 5.07 表 8 各载荷对应参数
Table 8. Parameters for each load case
载荷/t a b c 2 38.984 158.863 0.562 3 44.210 116.607 0.701 4 56.491 102.955 0.718 5 64.274 81.347 0.706 表 9 不同载荷下压力误差分析
Table 9. Error analysis of pressure under different load cases
载荷 压力值及误差 测点1 测点2 测点3 测点4 测点5 测点6 测点7 测点8 W=2 t 试验值/MPa 0.77 1.09 0.79 0.32 0.79 0.77 1.09 0.77 计算值/MPa 0.94 1.19 0.59 0.56 0.59 1.09 1.03 0.66 误差/% 22.1 9.2 −25.3 75 −25.3 41.6 −5.5 −14.3 平均误差/% 3.8 W=3 t 试验值/MPa 1.25 1.23 0.87 0.36 0.83 1.25 1.23 0.84 计算值/MPa 1.06 1.24 0.74 0.7 0.74 1.18 1.09 0.77 误差/% −15.2 0.8 −14.9 94.4 −10.8 −5.6 −11.4 −8.3 平均误差/% 4.1 W=4 t 试验值/MPa 1.36 1.42 0.9 0.39 0.85 1.36 1.42 0.85 计算值/MPa 1.13 1.29 0.76 0.72 0.76 1.25 1.12 0.78 误差/% −16.9 −9.2 −15.6 84.6 −10.6 −8.1 −21.1 −8.2 平均误差/% 8.4 W=5 t 试验值/MPa 1.45 1.6 0.96 0.37 0.87 1.45 1.6 0.9 计算值/MPa 1.14 1.27 0.76 0.71 0.76 1.26 1.08 0.75 误差/% −21.4 −20.6 −20.8 91.9 −12.6 −13.1 −32.5 −16.7 平均误差/% 15.7 -
[1] Lloyd's Register of Shipping . Rules and regulations for the classification of special service craft[R]. England: Lloyd's Register of Shipping, 2017. [2] JACKSON R I, FRIEZE P A. Design of deck structures under wheel loads[J]. The Royal Institution of Naval Architects, 1981(3): 119–144. [3] WESOLOWSKI M, BLACHA K, PIETRUSZEWSKI P, et al. Analysis of the actual contact surface of selected aircraft tires with the airport pavement as a function of pressure and vertical load[J]. Coatings, 2020, 10: 591. doi: 10.3390/coatings10060591 [4] ZHU L, CAI W, FRIEZE P A, et al. Design method for steel deck plates under quasi-static patch loads with allowable plastic deformations[J]. Marine Structures, 2020, 71: 102702. doi: 10.1016/j.marstruc.2019.102702 [5] 王智慧. 波纹夹层板轮印载荷分配与极限承载能力研究[D]. 武汉: 华中科技大学, 2015.WANG Z H. Study on Patch Loading Distribution and ultimate load carrying capacity of corrugated sandwich plates[D]. Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese). [6] 刘聪, 程远胜, 张攀, 等. 加筋板轮印载荷分布特性的试验与数值分析[J]. 海洋工程, 2017, 35(4): 84–93.LIU C, CHENG Y S, ZHANG P, et al. Experiment and numerical analyses on wheel load distribution on stiffened plate[J]. The Ocean Engineering, 2017, 35(4): 84–93 (in Chinese). [7] 胡小弟, 孙立军. 重型货车轮胎接地压力分布实测[J]. 同济大学学报(自然科学版), 2005, 33(11): 1443–1448. doi: 10.3321/j.issn:0253-374X.2005.11.005HU X D, SUN L J. Measuring tire ground pressure distribution of heavy vehicle[J]. Journal of Tongji University (Natural Science), 2005, 33(11): 1443–1448 (in Chinese). doi: 10.3321/j.issn:0253-374X.2005.11.005 [8] 柳帅蒙. 载重轮胎接地压力模型研究[D]. 西安: 长安大学, 2015.LIU S M. Study on the truck tire contact pressure model[D]. Xi'an: Chang'an University, 2015 (in Chinese). [9] MOHSENIMANESH A, WARD S M. Estimation of a three-dimensional tyre footprint using dynamic soil–tyre contact pressures[J]. Journal of Terramechanics, 2010, 47(6): 415–421. doi: 10.1016/j.jterra.2010.02.003 [10] POLASIK J, WALUS K J, WARGUŁA Ł. Experimental studies of the size contact area of a summer tire as a function of pressure and the load[J]. Procedia Engineering, 2017, 177: 347–351. doi: 10.1016/j.proeng.2017.02.203 [11] SEBASTIAN W M, WEBSTER T, KENNEDY C, et al. Profiled metal plate–cork mat loading systems on cellular FRP bridge decks to reproduce tyre-to-deck contact pressure distributions[J]. Construction and Building Materials, 2013, 49: 1064–1082. doi: 10.1016/j.conbuildmat.2013.07.004 [12] 全国钢标准化技术委员会. GB/T 228—2002 金属材料室温拉伸试验方法[S]. 北京: 全国钢标准化技术委员会, 2002National Technical Committee for Steel Standardization. GB/T 228—2002 Metallic materials— tensile testing at ambient temperature[S]. Beijing: National Technical Committee for Steel Standardization, 2002 (in Chinese). [13] 庄继德. 汽车轮胎学[M]. 北京: 北京理工大学出版社, 1996: 134–140.ZHUANG J D. Automobile tire[M]. Beijing: Beijing Institute of Technology Press, 1996: 134–140 (in Chinese) [14] 王国林, 樊旭峰, 江浩斌. 外倾和侧偏联合作用下轮胎接地印迹研究[J]. 汽车工程, 2004, 26(1): 54–56. doi: 10.3321/j.issn:1000-680X.2004.01.015WANG G L, FAN X F, JIANG H B. A study on contact patch of tire with camber and sideslip[J]. Automotive Engineering, 2004, 26(1): 54–56 (in Chinese). doi: 10.3321/j.issn:1000-680X.2004.01.015 [15] 吴卫东, 管迪华. 利用试验模态参数研究轮胎与地面的接触[J]. 清华大学学报(自然科学版), 1996, 36(10): 46–49.WU W D, GUAN D H. Research on tire static contact with ground using experimental modal parameters[J]. Journal of Tsinghua University (Sci & Tech), 1996, 36(10): 46–49 (in Chinese). [16] REYNAUD P, NASR S B, ALLOU F, et al. 3D modelling of tyre-pavement contact pressure[J]. European Journal of Environmental and Civil Engineering, 2017, 21(6): 712–729. doi: 10.1080/19648189.2016.1150894 -