留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载重轮胎的轮印载荷分布特性试验研究

何市伟 刘晖 张梗林 王德禹

何市伟, 刘晖, 张梗林, 等. 载重轮胎的轮印载荷分布特性试验研究[J]. 中国舰船研究, 2021, 16(6): 140–150 doi: 10.19693/j.issn.1673-3185.02121
引用本文: 何市伟, 刘晖, 张梗林, 等. 载重轮胎的轮印载荷分布特性试验研究[J]. 中国舰船研究, 2021, 16(6): 140–150 doi: 10.19693/j.issn.1673-3185.02121
HE S W, LIU H, ZHANG G L, et al. Experimental study on wheel load distribution characteristics of truck tires[J]. Chinese Journal of Ship Research, 2021, 16(6): 140–150 doi: 10.19693/j.issn.1673-3185.02121
Citation: HE S W, LIU H, ZHANG G L, et al. Experimental study on wheel load distribution characteristics of truck tires[J]. Chinese Journal of Ship Research, 2021, 16(6): 140–150 doi: 10.19693/j.issn.1673-3185.02121

载重轮胎的轮印载荷分布特性试验研究

doi: 10.19693/j.issn.1673-3185.02121
详细信息
    作者简介:

    何市伟,男,1995年生,硕士生。研究方向:船舶与海洋结构强度与轮印载荷分布特性研究。E-mail:xuanqing@alumni.sjtu.edu.cn

    刘晖,男,1986年生,硕士,工程师

    张梗林,男,1986年生,硕士,工程师

    王德禹,男,1963年生,教授,博士生导师。研究方向:船舶与海洋工程结构力学,结构优化设计与可靠性分析,结构极限强度与试验技术研究。E-mail:dywang@sjtu.edu.cn

    通信作者:

    王德禹

  • 中图分类号: U661.43

Experimental study on wheel load distribution characteristics of truck tires

知识共享许可协议
载重轮胎的轮印载荷分布特性试验研究何市伟,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要:   目的  旨在探究轮印载荷在加筋板上的分布特性。  方法  首先开展不同载荷工况下的加筋板轮压试验,获取载重轮胎与铝合金加筋板的接触面积和接触压力的变化形式,总结轮印载荷的基本分布规律。其次,通过试验数据和结果分析提出轮印载荷分布特性的二次多项式表达形式,并给出不同载荷下多项式参数的确定方法。最后,对比分析加筋板数值仿真与试验的应力响应结果。  结果  获得了载重轮胎在甲板上的载荷分布规律和表达方法。验证了所提轮印载荷分布形式的合理性。  结论  研究有助于对轮印载荷分布特性的理解,并对工程实际应用具有一定的参考意义。
  • 图  1  模型结构示意图

    Figure  1.  Schematic diagram of model structure

    图  2  压力测点和位移计布置

    Figure  2.  Layout of pressure measuring points and displacement points

    图  3  试验结构总装和加载位置

    Figure  3.  Experiment assembly and loading position

    图  4  铝合金材料的应力–应变曲线

    Figure  4.  Tensile curve of aluminum alloy material

    图  5  施加2~5 t载荷时的轮印

    Figure  5.  Tire footprints with 2-5 t load

    图  6  轮印转化方法示意图

    Figure  6.  Convert method of tire footprint

    图  7  3种压力曲面示意图

    Figure  7.  Schematic diagram of three pressure surfaces

    图  8  参数依赖点示意图

    Figure  8.  Parameter relative points

    图  9  载荷5 t时压力分布曲面

    Figure  9.  Pressure distribution under 5 t load case

    图  10  有限元模型及载荷边界情况

    Figure  10.  FEM model and load boundary conditions

    图  11  应力截面位置示意图

    Figure  11.  Schematic diagram of the stress section positions

    图  12  不同载荷下模型应力分布云图

    Figure  12.  Mises stress contours of model under different load cases

    图  13  载荷2 t时各截面仿真与试验应力对比

    Figure  13.  Comparison of simulation and test stress of each section with 2 t load

    图  14  载荷3 t时各截面仿真与试验应力对比

    Figure  14.  Comparison of simulation and test stresses of each section with 3 t load

    图  15  载荷4 t时各截面仿真与试验应力对比

    Figure  15.  Comparison of simulation and test stress of each section with 4 t load

    图  16  载荷5 t时各截面仿真与试验应力对比

    Figure  16.  Comparison of simulation and test stress of each section with 5 t load

    图  17  位移−载荷曲线仿真与试验结果对比

    Figure  17.  Comparison of simulation and test displacement with load

    表  1  工况表

    Table  1.   Load cases

    工况1工况2工况3工况4
    载荷/t2345
    下载: 导出CSV

    表  2  轮印面积、尺寸与载荷的关系

    Table  2.   Relationship between tire footprint area, size and load

    载荷
    W/t
    轮印面积
    S/m2
    有效面积
    λS/m2
    矩形轮印
    尺寸(2B′×2L′)/m2
    有效矩形轮印
    尺寸(2B×2L)/m2
    20.03600.023 040.27×0.1330.216×0.107
    30.04490.028 740.27×0.1660.216×0.133
    40.05400.034 560.27×0.2000.216×0.160
    50.06480.041 470.27×0.2400.216×0.192
    下载: 导出CSV

    表  3  不同载荷下各压力测点试验数据结果

    Table  3.   Testing results of each pressure point under different load cases

    载荷W/t压力/MPa
    测点1测点2测点3测点4测点5测点6测点7测点8
    22.0101.4391.0920.3210.4850.2850.7480.765
    32.1141.5521.1700.3560.5320.3890.9040.840
    42.2191.8041.2000.390.4850.4961.0440.853
    52.3341.9781.2610.3730.5650.5671.2170.899
    下载: 导出CSV

    表  4  不同载荷下各压力测点修正数据结果

    Table  4.   Modified results of each pressure point under different load cases

    载荷W/t压力/MPa
    测点1测点2测点3测点4测点5测点6测点7测点8
    20.771.090.790.320.790.771.090.77
    31.251.230.870.360.831.251.230.84
    41.361.420.900.390.851.361.420.85
    51.451.600.960.370.871.451.600.90
    下载: 导出CSV

    表  5  不同载荷下各应变测点转换的Mises应力

    Table  5.   Mises stress of each strain point under different load cases

    载荷W/tMises压力/MPa
    测点1测点2测点3测点4测点5测点6测点7测点8测点9
    213.0116.5712.6748.68149.3545.248.146.757.47
    318.5022.9417.9468.30168.0063.967.753.285.85
    423.5328.4222.7691.83168.0087.446.229.994.37
    528.2633.3427.23119.82168.00114.775.9417.597.92
    下载: 导出CSV

    表  6  不同载荷下测点7,8,9的试验应变

    Table  6.   Tested strain data of measuring points 7, 8, 9 under different load cases

    载荷/t测点7试验应变/μm测点8试验应变/μm测点9试验应变/μm
    45°90°45°90°45°90°
    2−79.77−47.70−68.77−72.36−70.82−55.33−69.48−90.35−68.47
    3−50.06−65.89−93.0723.19−18.09−43.14−26.99−47.28−76.18
    4−6.48−68.05−83.31142.1942.51−48.9035.1927.11−40.12
    539.96−51.74−51.81255.1199.75−56.8096.0395.762.17
    下载: 导出CSV

    表  7  不同载荷下位移测点结果

    Table  7.   Displacement results under different load cases

    载荷W/t
    2345
    位移/mm2.633.564.345.07
    下载: 导出CSV

    表  8  各载荷对应参数

    Table  8.   Parameters for each load case

    载荷/tabc
    238.984158.8630.562
    344.210116.6070.701
    456.491102.9550.718
    564.27481.3470.706
    下载: 导出CSV

    表  9  不同载荷下压力误差分析

    Table  9.   Error analysis of pressure under different load cases

    载荷 压力值及误差 测点1 测点2 测点3 测点4 测点5 测点6 测点7 测点8
    W=2 t 试验值/MPa 0.77 1.09 0.79 0.32 0.79 0.77 1.09 0.77
    计算值/MPa 0.94 1.19 0.59 0.56 0.59 1.09 1.03 0.66
    误差/% 22.1 9.2 −25.3 75 −25.3 41.6 −5.5 −14.3
    平均误差/% 3.8
    W=3 t 试验值/MPa 1.25 1.23 0.87 0.36 0.83 1.25 1.23 0.84
    计算值/MPa 1.06 1.24 0.74 0.7 0.74 1.18 1.09 0.77
    误差/% −15.2 0.8 −14.9 94.4 −10.8 −5.6 −11.4 −8.3
    平均误差/% 4.1
    W=4 t 试验值/MPa 1.36 1.42 0.9 0.39 0.85 1.36 1.42 0.85
    计算值/MPa 1.13 1.29 0.76 0.72 0.76 1.25 1.12 0.78
    误差/% −16.9 −9.2 −15.6 84.6 −10.6 −8.1 −21.1 −8.2
    平均误差/% 8.4
    W=5 t 试验值/MPa 1.45 1.6 0.96 0.37 0.87 1.45 1.6 0.9
    计算值/MPa 1.14 1.27 0.76 0.71 0.76 1.26 1.08 0.75
    误差/% −21.4 −20.6 −20.8 91.9 −12.6 −13.1 −32.5 −16.7
    平均误差/% 15.7
    下载: 导出CSV
  • [1] Lloyd's Register of Shipping . Rules and regulations for the classification of special service craft[R]. England: Lloyd's Register of Shipping, 2017.
    [2] JACKSON R I, FRIEZE P A. Design of deck structures under wheel loads[J]. The Royal Institution of Naval Architects, 1981(3): 119–144.
    [3] WESOLOWSKI M, BLACHA K, PIETRUSZEWSKI P, et al. Analysis of the actual contact surface of selected aircraft tires with the airport pavement as a function of pressure and vertical load[J]. Coatings, 2020, 10: 591. doi: 10.3390/coatings10060591
    [4] ZHU L, CAI W, FRIEZE P A, et al. Design method for steel deck plates under quasi-static patch loads with allowable plastic deformations[J]. Marine Structures, 2020, 71: 102702. doi: 10.1016/j.marstruc.2019.102702
    [5] 王智慧. 波纹夹层板轮印载荷分配与极限承载能力研究[D]. 武汉: 华中科技大学, 2015.

    WANG Z H. Study on Patch Loading Distribution and ultimate load carrying capacity of corrugated sandwich plates[D]. Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese).
    [6] 刘聪, 程远胜, 张攀, 等. 加筋板轮印载荷分布特性的试验与数值分析[J]. 海洋工程, 2017, 35(4): 84–93.

    LIU C, CHENG Y S, ZHANG P, et al. Experiment and numerical analyses on wheel load distribution on stiffened plate[J]. The Ocean Engineering, 2017, 35(4): 84–93 (in Chinese).
    [7] 胡小弟, 孙立军. 重型货车轮胎接地压力分布实测[J]. 同济大学学报(自然科学版), 2005, 33(11): 1443–1448. doi: 10.3321/j.issn:0253-374X.2005.11.005

    HU X D, SUN L J. Measuring tire ground pressure distribution of heavy vehicle[J]. Journal of Tongji University (Natural Science), 2005, 33(11): 1443–1448 (in Chinese). doi: 10.3321/j.issn:0253-374X.2005.11.005
    [8] 柳帅蒙. 载重轮胎接地压力模型研究[D]. 西安: 长安大学, 2015.

    LIU S M. Study on the truck tire contact pressure model[D]. Xi'an: Chang'an University, 2015 (in Chinese).
    [9] MOHSENIMANESH A, WARD S M. Estimation of a three-dimensional tyre footprint using dynamic soil–tyre contact pressures[J]. Journal of Terramechanics, 2010, 47(6): 415–421. doi: 10.1016/j.jterra.2010.02.003
    [10] POLASIK J, WALUS K J, WARGUŁA Ł. Experimental studies of the size contact area of a summer tire as a function of pressure and the load[J]. Procedia Engineering, 2017, 177: 347–351. doi: 10.1016/j.proeng.2017.02.203
    [11] SEBASTIAN W M, WEBSTER T, KENNEDY C, et al. Profiled metal plate–cork mat loading systems on cellular FRP bridge decks to reproduce tyre-to-deck contact pressure distributions[J]. Construction and Building Materials, 2013, 49: 1064–1082. doi: 10.1016/j.conbuildmat.2013.07.004
    [12] 全国钢标准化技术委员会. GB/T 228—2002 金属材料室温拉伸试验方法[S]. 北京: 全国钢标准化技术委员会, 2002

    National Technical Committee for Steel Standardization. GB/T 228—2002 Metallic materials— tensile testing at ambient temperature[S]. Beijing: National Technical Committee for Steel Standardization, 2002 (in Chinese).
    [13] 庄继德. 汽车轮胎学[M]. 北京: 北京理工大学出版社, 1996: 134–140.

    ZHUANG J D. Automobile tire[M]. Beijing: Beijing Institute of Technology Press, 1996: 134–140 (in Chinese)
    [14] 王国林, 樊旭峰, 江浩斌. 外倾和侧偏联合作用下轮胎接地印迹研究[J]. 汽车工程, 2004, 26(1): 54–56. doi: 10.3321/j.issn:1000-680X.2004.01.015

    WANG G L, FAN X F, JIANG H B. A study on contact patch of tire with camber and sideslip[J]. Automotive Engineering, 2004, 26(1): 54–56 (in Chinese). doi: 10.3321/j.issn:1000-680X.2004.01.015
    [15] 吴卫东, 管迪华. 利用试验模态参数研究轮胎与地面的接触[J]. 清华大学学报(自然科学版), 1996, 36(10): 46–49.

    WU W D, GUAN D H. Research on tire static contact with ground using experimental modal parameters[J]. Journal of Tsinghua University (Sci & Tech), 1996, 36(10): 46–49 (in Chinese).
    [16] REYNAUD P, NASR S B, ALLOU F, et al. 3D modelling of tyre-pavement contact pressure[J]. European Journal of Environmental and Civil Engineering, 2017, 21(6): 712–729. doi: 10.1080/19648189.2016.1150894
  • 加载中
图(17) / 表(9)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  72
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-21
  • 修回日期:  2020-12-01
  • 网络出版日期:  2021-11-23
  • 刊出日期:  2021-12-10

目录

    /

    返回文章
    返回