留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强度分析的耐内压方形舱优化设计

郭雨 袁昱超 唐文勇

郭雨, 袁昱超, 唐文勇. 基于强度分析的耐内压方形舱优化设计[J]. 中国舰船研究, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02115
引用本文: 郭雨, 袁昱超, 唐文勇. 基于强度分析的耐内压方形舱优化设计[J]. 中国舰船研究, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02115
GUO Y, YUAN Y C, TANG W Y. Optimal design of internal pressure resistant square cabin based on strength analysis[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02115
Citation: GUO Y, YUAN Y C, TANG W Y. Optimal design of internal pressure resistant square cabin based on strength analysis[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02115

基于强度分析的耐内压方形舱优化设计

doi: 10.19693/j.issn.1673-3185.02115
基金项目: 中核青年英才计划资助项目
详细信息
    作者简介:

    郭雨,女,1995年生,硕士生。研究方向:船舶结构设计与优化。E-mail:guo-yu@sjtu.edu.cn

    袁昱超,男,1991年生,博士,助理研究员。研究方向:船海结构物响应分析及优化设计研究。E-mail:godyyc@sjtu.edu.cn

    唐文勇,男1970年生,博士,教授。研究方向:船海结构物载荷分析及结构安全性评估。E-mail:wytang@sjtu.edu.cn

    通信作者:

    袁昱超

  • 中图分类号: U661.4

Optimal design of internal pressure resistant square cabin based on strength analysis

  • 摘要:   目的  为了使船用耐内压方形舱同时满足强度和轻量化的设计要求,将神经网络代理模型与多种启发式智能优化算法相结合,对耐内压方形舱室结构构件形状和尺寸进行优化分析。  方法  选取方形舱室角隅倒角半径、板材板厚、骨材型号等作为设计变量进行三维参数化建模,根据最优拉丁超立方试验设计方法选取样本点并计算响应值,从而构建径向基(RBF)神经网络代理模型。将该代理模型分别与自适应模拟退火算法 (ASA)、多岛遗传算法 (MIGA)和粒子群算法 (PSO)这3种启发式优化算法相结合,进行全局寻优。  结果  结果显示,3种混合优化方法均能在满足许用强度要求的基础上减轻结构重量;RBF-ASA法在全局中寻求到的最优解具有相对较好的减重效果。  结论  所做研究可为耐内压方形舱室结构优化设计工作提供参考,对于攻克船舶运用核动力装置所面临的关键技术问题具有重要意义。
  • 图  1  优化设计流程图

    Figure  1.  Flowchart of optimal design

    图  2  几何模型

    Figure  2.  The geometric model

    图  3  构件分布位置

    Figure  3.  Location of components

    图  4  模型载荷及边界条件(1/4模型)

    Figure  4.  Load and boundary conditions of the model (1/4 of the model)

    图  5  耐内压方形舱室应力响应

    Figure  5.  Stress response of internal pressure resistant square cabin

    图  6  影响目标函数的主要变量的效应

    Figure  6.  The effect of main variables that affect objective function

    图  7  优化结果与初始值的比值

    Figure  7.  Ratio of optimization results to initial values

    表  1  钢材性能参数

    Table  1.   Parameters of steel performance

    性能参数921A钢DH40钢
    ${R_{\rm{m}}}$/(N·mm−2)655510
    ${R_{{\rm{eH}}}}$/(N·mm−2)590390
    $\left(\dfrac{R_{\rm{m}}}{2.7}\right)$/(N·mm−2)243189
    $\left(\dfrac {R_{{\rm{eH}}}}{1.5}\right)$/(N·mm−2)393260
    弹性模量E/(N·mm−2)2.1×1052.1×105
    密度/(kg·m−3)7 8507 850
    许用应力/MPa243189
    折减后的弹性模量/(N·mm−2)1.4×1051.4×105
    下载: 导出CSV

    表  2  构件初始设计值

    Table  2.   Initial design value of components

    构件属性名称初始设计值/mm构件属性名称初始设计值/mm
    内壳角隅倒角半径r600内壳底部骨材g1$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    内壳板-1(角隅)板厚t132内壳舷侧骨材g2$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    内壳板-2(底部)板厚t232内壳顶部骨材g3$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    内壳板-3板厚t332内壳横舱壁骨材g4$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    外壳板-1(角隅)板厚t428外壳底部骨材g5${\rm{HP220}} \times {\rm{11}}$
    外壳板-2(底部)板厚t524外壳舷侧骨材g6$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    外壳板-3板厚t620外壳顶部骨材g7$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    角隅隔板板厚t726外壳横舱壁骨材g8$ \bot \dfrac{{16 \times 200}}{{20 \times 100}}$
    水平隔板板厚t824底部加强筋g9$16 \times 180$
    纵向隔板-1(底部)板厚t918舷侧加强筋g10$16 \times 180$
    纵向隔板-2板厚t1020顶部加强筋g11$16 \times 180$
    横向隔板-1(底部)板厚t1124横舱壁水平加强筋g12$16 \times 180$
    横向隔板-2板厚t1222横舱壁垂向加强筋g13$16 \times 180$
    肘板板厚t1320
    下载: 导出CSV

    表  3  目标函数的R-squared值

    Table  3.   R-squared values of objective function

    目标函数R-squared值
    ${\sigma _1}$/MPa0.959 33
    ${\sigma _2}$/MPa0.928 55
    M/t0.998 88
    下载: 导出CSV

    表  4  全局优化后结构的响应结果

    Table  4.   Response results of structure after global optimization

    目标函数许用值初始值ASA
    优化值
    MIGA
    优化值
    PSO
    优化值
    σ1/MPa243237.279242.130242.243235.611
    σ2/MPa189178.761187.103185.818180.756
    M/t1 569.7801 355.1721 445.3341 422.096
    模型减重
    百分比/%
    13.677.939.41
    下载: 导出CSV
  • [1] 刘洁雪. 基于响应面法的集装箱船优化设计研究[D]. 天津: 天津大学, 2008.

    LIU J X. Research on optimum design of a container ship based on response surface methodology[D]. Tianjin: Tianjin University, 2008 (in Chinese).
    [2] 程远胜, 孙莹, 闫国强, 等. 基于神经网络与遗传算法的潜艇舱壁结构优化[J]. 中国造船, 2008, 49(4): 81–87. doi: 10.3969/j.issn.1000-4882.2008.04.011

    CHENG Y S, SUN Y, YAN G Q, et al. Structural optimization of a submarine end plane transverse bulkhead based on neural networks and genetic algorithm[J]. Shipbuilding of China, 2008, 49(4): 81–87 (in Chinese). doi: 10.3969/j.issn.1000-4882.2008.04.011
    [3] 卓思雨. 油船结构轻量化设计及其安全性研究[D]. 上海: 上海交通大学, 2019.

    ZHUO S Y. Research on structure lightweight design and safety assessment of oil tanker[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese).
    [4] 高上地, 陈静, 卢骏锋, 等. 内压下矩形耐压舱角隅结构形状和拓扑优化设计[J]. 中国造船, 2017, 58(1): 94–100. doi: 10.3969/j.issn.1000-4882.2017.01.011

    GAO S D, CHEN J, LU J F, et al. Shape and topology optimization design of rectangular tank's corner structure under internal pressure[J]. Shipbuilding of China, 2017, 58(1): 94–100 (in Chinese). doi: 10.3969/j.issn.1000-4882.2017.01.011
    [5] 陈杨科, 余恩恩, 骆伟, 等. 内压下矩形耐压舱内部结构优化设计[J]. 中国舰船研究, 2017, 12(6): 81–85. doi: 10.3969/j.issn.1673-3185.2017.06.012

    CHEN Y K, YU E E, LUO W, et al. Optimal design of internal structure of rectangular cabin under internal pressure[J]. Chinese Journal of Ship Research, 2017, 12(6): 81–85 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.06.012
    [6] 陈静, 余恩恩, 卢骏锋, 等. 矩形耐压舱预应力支柱优化设计[J]. 中国舰船研究, 2019, 14(1): 102–106. doi: 10.19693/j.issn.1673-3185.01089

    CHEN J, YU E E, LU J F, et al. Optimal design of prestressed pillars for rectangular pressure cabin[J]. Chinese Journal of Ship Research, 2019, 14(1): 102–106 (in Chinese). doi: 10.19693/j.issn.1673-3185.01089
    [7] American Institute of Steel Construction. Specification for structural steel buildings: ANSI/AISC 360-05[S]. Chicago: American Institute of Steel Construction, Inc., 2005.
    [8] 中国船级社. 潜水系统和潜水器入级规范[S]. 北京: 中国船级社, 2018.

    China Classification Society. Classification specification for diving systems and diving systems[S]. Beijing: China Classification Society, 2018 (in Chinese).
    [9] 吴振君, 王水林, 葛修润. LHS方法在边坡可靠度分析中的应用[J]. 岩土力学, 2010, 31(4): 1047–1054. doi: 10.3969/j.issn.1000-7598.2010.04.007

    WU Z J, WANG S L, GE X R. Application of Latin hypercube sampling technique to slope reliability analysis[J]. Rock and Soil Mechanics, 2010, 31(4): 1047–1054 (in Chinese). doi: 10.3969/j.issn.1000-7598.2010.04.007
    [10] 刘加利. 高速列车气动噪声特性分析与降噪研究[D]. 成都: 西南交通大学, 2013.

    LIU J L. Study on characteristics analysis and control of aeroacoustics of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2013 (in Chinese).
    [11] MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural Computation, 1989, 1(2): 281–294. doi: 10.1162/neco.1989.1.2.281
    [12] 郑少平, 陈静, 程远胜, 等. 代理模型技术及其在船舶板架强度和稳定性计算中的应用[J]. 中国造船, 2013, 54(1): 40–51. doi: 10.3969/j.issn.1000-4882.2013.01.007

    ZHENG S P, CHEN J, CHENG Y S, et al. Surrogate models and their application in calculation of strength and stability of ship grillage[J]. Shipbuilding of China, 2013, 54(1): 40–51 (in Chinese). doi: 10.3969/j.issn.1000-4882.2013.01.007
    [13] INGBER L. Adaptive simulated annealing (ASA): lessons learned[J]. Control and Cybernetics, 1996, 25: 33–54.
    [14] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. Perth: IEEE, 1995.
    [15] 秦健健, 毛虎平. 基于多岛遗传算法的柴油机连杆结构优化设计[J]. 机械设计与制造, 2017(4): 218–221. doi: 10.3969/j.issn.1001-3997.2017.04.056

    QIN J J, MAO H P. Diesel engine connecting rod structure optimization design based on MIGA algorithm[J]. Machinery Design & Manufacture, 2017(4): 218–221 (in Chinese). doi: 10.3969/j.issn.1001-3997.2017.04.056
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  27
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-17
  • 修回日期:  2020-12-11
  • 网络出版日期:  2021-05-06

目录

    /

    返回文章
    返回