留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反馈式多线谱主动隔振控制算法研究

张庆伟 俞翔 杨理华

张庆伟, 俞翔, 杨理华. 反馈式多线谱主动隔振控制算法研究[J]. 中国舰船研究, 2021, 16(X): 1–8 doi: 10.19693/j.issn.1673-3185.02107
引用本文: 张庆伟, 俞翔, 杨理华. 反馈式多线谱主动隔振控制算法研究[J]. 中国舰船研究, 2021, 16(X): 1–8 doi: 10.19693/j.issn.1673-3185.02107
ZHANG Q W, YU X, YANG L H. Multi-line spectrum feedback control algorithm for active vibration isolation [J]. Chinese Journal of Ship Research, 2021, 16(X): 1–8 doi: 10.19693/j.issn.1673-3185.02107
Citation: ZHANG Q W, YU X, YANG L H. Multi-line spectrum feedback control algorithm for active vibration isolation [J]. Chinese Journal of Ship Research, 2021, 16(X): 1–8 doi: 10.19693/j.issn.1673-3185.02107

反馈式多线谱主动隔振控制算法研究

doi: 10.19693/j.issn.1673-3185.02107
基金项目: 国家自然科学基金资助项目(51679245,51909267);山东省自然科学基金资助项目(ZR2019QEE031)
详细信息
    作者简介:

    张庆伟,男,1994年生,硕士生。研究方向:振动主动控制。E-mail:2923172134@qq.com

    俞翔,男,1978年生,博士,副教授。研究方向:振动与噪声控制。E-mail:yuxiang898@sina.com

    通信作者:

    俞翔

  • 中图分类号: U661.44; TB535.1

Multi-line spectrum feedback control algorithm for active vibration isolation

  • 摘要:   目的  针对振动控制中多频激励的传统自适应滤波算法控制效果不佳,以及工程中传感器不易安装和通道耦合等原因导致参考信号失配的问题,提出一种反馈式多线谱控制算法。  方法  首先,使误差信号通过级联自适应陷波器,并根据自适应算法更新陷波器参数来估计多个信号频率;然后,合成各参考信号,对相位进行补偿,通过Hilbert变换得到另一路参考信号; 最后,进入并行控制器完成幅值更新,实现振动控制。  结果  仿真和试验结果表明,该算法能够精确估计频率信息,合成可靠参考信号,对30,37,60和110 Hz线谱均取得了20~40 dB能量衰减。  结论  该算法较好地解决了振动控制中参考信号失配和多线谱振动的问题,有效减弱和抑制了低频振动能量传递。
  • 图  1  IIR陷波器结构图

    Figure  1.  IIR notch filter structure diagram

    图  2  N阶级联自适应陷波器结构

    Figure  2.  N-level cascade adaptive notch filter structure

    图  3  反馈式多线谱控制算法框图

    Figure  3.  Block diagram of feedback multi-line spectrum control algorithm

    图  4  初级通道和次级通道传递函数幅值图

    Figure  4.  Amplitude diagram of transfer function of the primary and secondary channels

    图  5  FXLMS算法仿真结果

    Figure  5.  Simulation results of the FXLMS algorithm

    图  6  反馈式多线谱控制算法仿真结果

    Figure  6.  Simulation results of feedback multi-line spectrum control algorithm

    图  7  振动线谱频率估计图

    Figure  7.  Frequency estimation diagram of vibration line spectrum

    图  8  原始信号与合成信号相位补偿前/后时历曲线

    Figure  8.  Time history of original signal and synthetic signal before and after phase compensation

    图  9  本文算法与FXLMS算法输出信号图

    Figure  9.  Output signal diagram of the algorithm in this paper and the FXLMS algorithm

    图  10  主动隔振试验现场图及示意图

    Figure  10.  Test site diagram and schematic diagram of active vibration isolation experiment

    图  11  FXLMS算法试验结果

    Figure  11.  Experimental results of the FXLMS algorithm

    图  12  本文算法试验结果图

    Figure  12.  Experimental results of the algorithm in this paper

    表  1  仿真中两种算法振动衰减

    Table  1.   Vibration attenuation of two algorithms in simulation

    振动线谱/HzFXLMS算法衰减值/dB反馈算法衰减值/dB
    控制前控制后控制前控制后
    30−6.34−13.51−6.34−29.79
    37−6.12−18.07−6.12−36.64
    60−22.5−22.5−22.5−45.37
    110−27.97−36.78−27.97−66.05
    下载: 导出CSV

    表  2  试验中两种算法振动衰减的比较

    Table  2.   Comparison of vibration attenuation by two algorithms in experiment

    振动线谱/HzFXLMS算法衰减值/dB反馈算法衰减值/dB
    控制前控制后控制前控制后
    30−35.1−46.38−35.1−55.01
    37−36.46−41.49−36.46−62.39
    60−38.88−44.21−38.88−59.16
    110−37.51−67.43−39.48−70.87
    下载: 导出CSV
  • [1] 朱石坚, 楼京俊, 何其伟, 等. 振动理论与隔振技术[M]. 北京: 国防工业出版社, 2006.

    ZHU S J, LOU J J, HE Q W, et al. Vibration theory and vibration isolation[M]. Beijing: National Defense Industry Press, 2006 (in Chinese).
    [2] 陈绍青, 王永, 魏璀璨, 等. 一类多频线谱激励下的主动隔振控制方法[J]. 振动与冲击, 2012, 31(23): 128–131, 190.

    CHEN S Q, WANG Y, WEI C C, et al. An active vibration isolation control method under excitation of multi-line spectra[J]. Journal of Vibration and Shock, 2012, 31(23): 128–131, 190 (in Chinese).
    [3] LI Y, HE L, SHUAI C G, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407: 226–239. doi: 10.1016/j.jsv.2017.07.007
    [4] 牛宁, 刘钟, 孙玲玲. 考虑作动器输出约束的分散中间质量混合隔振系统建模分析[J]. 中国舰船研究, 2019, 14(6): 155–163. doi: 10.19693/j.issn.1673-3185.01505

    NIU N, LIU Z, SUN L L. Modeling and analysis of decentralized intermediate mass hybrid vibration isolation system considering actuator output constraints[J]. Chinese Journal of Ship Research, 2019, 14(6): 155–163 (in Chinese). doi: 10.19693/j.issn.1673-3185.01505
    [5] ELLIOT S J. Signal processing for active control[M]. London: Academic Press, 2001.
    [6] 赵洪亮, 徐健, 李晓东, 等. 一种改进的选频有源噪声控制算法[J]. 声学学报, 2004, 29(6): 499–506.

    ZHAO H L, XU J, LI X D, et al. A modified algorithm of the active noise control system based on frequency-selective filter[J]. Acta Acustica, 2004, 29(6): 499–506 (in Chinese).
    [7] 李彦, 何琳, 帅长庚. 多通道窄带Fx-Newton时频算法及动力机械有源隔振实验[J]. 声学学报, 2015, 40(3): 391–403.

    LI Y, HE L, SHUAI C G. MIMO Fx-Newton narrowband algorithm and experiment of active vibration isolation on diesel generator[J]. Acta Acustica, 2015, 40(3): 391–403 (in Chinese).
    [8] 高伟鹏, 贺国, 刘树勇, 等. 小波包变换自适应振动控制方法[J]. 控制与决策, 2021, 36(1): 83–89.

    GAO W P, HE G, LIU S Y, et al. Adaptive vibration control method based on wavelet packet transform[J]. Control and Decision, 2021, 36(1): 83–89 (in Chinese).
    [9] 张志谊, 王俊芳, 周建鹏, 等. 基于跟踪滤波的自适应振动控制[J]. 振动与冲击, 2009, 28(2): 64–67.

    ZHANG Z Y, WANG J F, ZHOU J P, et al. Adaptive vibration control with tracking filters[J]. Journal of Vibration and Shock, 2009, 28(2): 64–67 (in Chinese).
    [10] 翟晓军, 周波. 一种改进的插值FFT谐波分析算法[J]. 中国电机工程学报, 2016, 36(11): 2952–2958.

    ZHAI X J, ZHOU B. An improved interpolated FFT algorithm for harmonic analysis[J]. Proceedings of the CSEE, 2016, 36(11): 2952–2958 (in Chinese).
    [11] WANG H, SUN H L, SUN Y P, et al. A narrowband active noise control system with a frequency estimation algorithm based on parallel adaptive notch filter[J]. Signal Processing, 2019, 154: 108–119. doi: 10.1016/j.sigpro.2018.08.012
    [12] DAI W H, QIAO C J, WANG Y K, et al. Adaptive cascaded notch filter for frequency estimation of multiple sinusoids[C]//Proceedings of the 2nd International Conference on Wireless Communication and Sensor Network. Changsha: World Scientific, 2016: 138-144.
    [13] SIRDI N K M, MONNEAU A, NAAMANE A. Adaptive notch filters for prediction of narrow band signals[C]//Proceedings of the 7th IEEE International Conference on Systems and Control (ICSC). Valencia, Spain: IEEE, 2018.
    [14] XIAO Y, MA L, KHORASANI K, et al. A new robust narrowband active noise control system in the presence of frequency mismatch[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2189–2200. doi: 10.1109/TASL.2006.872604
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  73
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-10-18
  • 网络出版日期:  2021-03-31

目录

    /

    返回文章
    返回