Multi-line spectrum feedback control algorithm for active vibration isolation
-
摘要:
目的 针对振动控制中多频激励的传统自适应滤波算法控制效果不佳,以及工程中传感器不易安装和通道耦合等原因导致参考信号失配的问题,提出一种反馈式多线谱控制算法。 方法 首先,使误差信号通过级联自适应陷波器,并根据自适应算法更新陷波器参数来估计多个信号频率;然后,合成各参考信号,对相位进行补偿,通过Hilbert变换得到另一路参考信号; 最后,进入并行控制器完成幅值更新,实现振动控制。 结果 仿真和试验结果表明,该算法能够精确估计频率信息,合成可靠参考信号,对30,37,60和110 Hz线谱均取得了20~40 dB能量衰减。 结论 该算法较好地解决了振动控制中参考信号失配和多线谱振动的问题,有效减弱和抑制了低频振动能量传递。 Abstract:Objectives Aiming at the poor control effect of the traditional adaptive filtering algorithm for multi-frequency excitation in vibration control, and the engineering problems of difficult sensor installation and channel coupling that cause reference signal mismatch, this paper proposes a feedback multi-line spectrum control algorithm. Methods First, the error signal is passed through the cascaded adaptive notch filter, and the notch filter parameters are updated according to the adaptive algorithm to estimate multiple signal frequencies. Next, each reference signal is synthesized and phase compensation performed, then another reference signal is obtained through Hilbert transform and the parallel controller is finally entered to complete the amplitude update and realize vibration control. Results Through simulation and experimental verification, the results show that the proposed algorithm can accurately estimate frequency information, synthesize reliable reference signals and achieve 20–40 dB energy attenuation for 30, 37, 60 and 110 Hz line spectrums. Conclusions This algorithm provides a better solution to the problems of reference signal mismatch and multi-line spectrum vibration in vibration control, and effectively reduces and suppresses low-frequency vibration energy transmission. -
表 1 仿真中两种算法振动衰减
Table 1. Vibration attenuation of two algorithms in simulation
振动线谱/Hz FXLMS算法衰减值/dB 反馈算法衰减值/dB 控制前 控制后 控制前 控制后 30 −6.34 −13.51 −6.34 −29.79 37 −6.12 −18.07 −6.12 −36.64 60 −22.5 −22.5 −22.5 −45.37 110 −27.97 −36.78 −27.97 −66.05 表 2 试验中两种算法振动衰减的比较
Table 2. Comparison of vibration attenuation by two algorithms in experiment
振动线谱/Hz FXLMS算法衰减值/dB 反馈算法衰减值/dB 控制前 控制后 控制前 控制后 30 −35.1 −46.38 −35.1 −55.01 37 −36.46 −41.49 −36.46 −62.39 60 −38.88 −44.21 −38.88 −59.16 110 −37.51 −67.43 −39.48 −70.87 -
[1] 朱石坚, 楼京俊, 何其伟, 等. 振动理论与隔振技术[M]. 北京: 国防工业出版社, 2006.ZHU S J, LOU J J, HE Q W, et al. Vibration theory and vibration isolation[M]. Beijing: National Defense Industry Press, 2006 (in Chinese). [2] 陈绍青, 王永, 魏璀璨, 等. 一类多频线谱激励下的主动隔振控制方法[J]. 振动与冲击, 2012, 31(23): 128–131, 190. doi: 10.3969/j.issn.1000-3835.2012.23.024CHEN S Q, WANG Y, WEI C C, et al. An active vibration isolation control method under excitation of multi-line spectra[J]. Journal of Vibration and Shock, 2012, 31(23): 128–131, 190 (in Chinese). doi: 10.3969/j.issn.1000-3835.2012.23.024 [3] LI Y, HE L, SHUAI C G, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407: 226–239. doi: 10.1016/j.jsv.2017.07.007 [4] 牛宁, 刘钟, 孙玲玲. 考虑作动器输出约束的分散中间质量混合隔振系统建模分析[J]. 中国舰船研究, 2019, 14(6): 155–163. doi: 10.19693/j.issn.1673-3185.01505NIU N, LIU Z, SUN L L. Modeling and analysis of decentralized intermediate mass hybrid vibration isolation system considering actuator output constraints[J]. Chinese Journal of Ship Research, 2019, 14(6): 155–163 (in Chinese). doi: 10.19693/j.issn.1673-3185.01505 [5] ELLIOT S J. Signal processing for active control[M]. London: Academic Press, 2001. [6] 赵洪亮, 徐健, 李晓东, 等. 一种改进的选频有源噪声控制算法[J]. 声学学报, 2004, 29(6): 499–506. doi: 10.3321/j.issn:0371-0025.2004.06.003ZHAO H L, XU J, LI X D, et al. A modified algorithm of the active noise control system based on frequency-selective filter[J]. Acta Acustica, 2004, 29(6): 499–506 (in Chinese). doi: 10.3321/j.issn:0371-0025.2004.06.003 [7] 李彦, 何琳, 帅长庚. 多通道窄带Fx-Newton时频算法及动力机械有源隔振实验[J]. 声学学报, 2015, 40(3): 391–403.LI Y, HE L, SHUAI C G. MIMO Fx-Newton narrowband algorithm and experiment of active vibration isolation on diesel generator[J]. Acta Acustica, 2015, 40(3): 391–403 (in Chinese). [8] 高伟鹏, 贺国, 刘树勇, 等. 小波包变换自适应振动控制方法[J]. 控制与决策, 2021, 36(1): 83–89.GAO W P, HE G, LIU S Y, et al. Adaptive vibration control method based on wavelet packet transform[J]. Control and Decision, 2021, 36(1): 83–89 (in Chinese). [9] 张志谊, 王俊芳, 周建鹏, 等. 基于跟踪滤波的自适应振动控制[J]. 振动与冲击, 2009, 28(2): 64–67. doi: 10.3969/j.issn.1000-3835.2009.02.016ZHANG Z Y, WANG J F, ZHOU J P, et al. Adaptive vibration control with tracking filters[J]. Journal of Vibration and Shock, 2009, 28(2): 64–67 (in Chinese). doi: 10.3969/j.issn.1000-3835.2009.02.016 [10] 翟晓军, 周波. 一种改进的插值FFT谐波分析算法[J]. 中国电机工程学报, 2016, 36(11): 2952–2958.ZHAI X J, ZHOU B. An improved interpolated FFT algorithm for harmonic analysis[J]. Proceedings of the CSEE, 2016, 36(11): 2952–2958 (in Chinese). [11] WANG H, SUN H L, SUN Y P, et al. A narrowband active noise control system with a frequency estimation algorithm based on parallel adaptive notch filter[J]. Signal Processing, 2019, 154: 108–119. doi: 10.1016/j.sigpro.2018.08.012 [12] DAI W H, QIAO C J, WANG Y K, et al. Adaptive cascaded notch filter for frequency estimation of multiple sinusoids[C]//Proceedings of the 2nd International Conference on Wireless Communication and Sensor Network. Changsha: World Scientific, 2016: 138–144. [13] SIRDI N K M, MONNEAU A, NAAMANE A. Adaptive notch filters for prediction of narrow band signals[C]//Proceedings of the 7th IEEE International Conference on Systems and Control (ICSC). Valencia, Spain: IEEE, 2018. [14] XIAO Y, MA L, KHORASANI K, et al. A new robust narrowband active noise control system in the presence of frequency mismatch[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2006, 14(6): 2189–2200. doi: 10.1109/TASL.2006.872604 -
ZG2107_en.pdf
-