留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶领域粒子图像测速技术的发展及应用

郭春雨 徐菁菁 韩阳 王超 郐云飞

郭春雨, 徐菁菁, 韩阳, 等. 船舶领域粒子图像测速技术的发展及应用[J]. 中国舰船研究, 2021, 16(6): 84–91, 150 doi: 10.19693/j.issn.1673-3185.02104
引用本文: 郭春雨, 徐菁菁, 韩阳, 等. 船舶领域粒子图像测速技术的发展及应用[J]. 中国舰船研究, 2021, 16(6): 84–91, 150 doi: 10.19693/j.issn.1673-3185.02104
GUO C Y, XU J J, Han Y, et al. Development and application of particle image velocimetry in ship field[J]. Chinese Journal of Ship Research, 2021, 16(6): 84–91, 150 doi: 10.19693/j.issn.1673-3185.02104
Citation: GUO C Y, XU J J, Han Y, et al. Development and application of particle image velocimetry in ship field[J]. Chinese Journal of Ship Research, 2021, 16(6): 84–91, 150 doi: 10.19693/j.issn.1673-3185.02104

船舶领域粒子图像测速技术的发展及应用

doi: 10.19693/j.issn.1673-3185.02104
基金项目: 中央高校基本科研业务费专项资金项目(3072020CFT0104,3072019CF0104); 基础产品创新科研项目(CZ380)
详细信息
    作者简介:

    郭春雨,男,1981 年生,博士,教授。研究方向:船舶推进及 PIV流场测试技术。E-mail:guochunyu@hrbeu.edu.cn

    徐菁菁,女,1996 年生,硕士生。研究方向:PIV流场测试技术

    韩阳,女,1988 年生,博士生。研究方向:船舶水动力性能预报及测试技术。E-mail:hanyang@hrbeu.edu.cn

    王超,男,1981 年生,博士,教授。研究方向:船舶推进与节能技术,冰区船舶航行性能预报及分析技术

    郐云飞,男,1995 年生,博士生。研究方向:PIV流场测试技术

    通信作者:

    韩阳

  • 中图分类号: U661.1

Development and application of particle image velocimetry in ship field

知识共享许可协议
船舶领域粒子图像测速技术的发展及应用郭春雨,等创作,采用知识共享署名4.0国际许可协议进行许可。
  • 摘要: 对粒子图像测速(PIV)技术的研究发展进行综述,梳理了PIV图像处理中速度场计算的各种方法及其研究进展。重点关注PIV在船舶实验测试中的应用现状,从水面船舶和水下航行器绕流场及船舶空气流场的应用3个方面进行阐述。最后,对PIV技术在船舶流场测试中的发展趋势进行展望,重点指出了测速硬件系统、图像处理技术以及船舶流场研究等方面所存在的问题,并对船舶流场测试技术发展提出了建议。研究成果对船舶流场研究及其性能优化具有参考和借鉴意义。
  • 图  1  PIV原理[3]

    Figure  1.  Principle of PIV[3]

    图  2  层析PIV原理示意图[4]

    Figure  2.  Schematic diagram of tomographic PIV [4]

    图  3  水下PIV装置[22]

    Figure  3.  Underwater PIV device[22]

    图  4  SPIV系统结构分解示意图[35]

    Figure  4.  SPIV system structure decomposition[35]

    图  5  不同截面位置处的船舶艉流场PIV测量图[35]

    Figure  5.  PIV measurement diagram of ship stern flow field at different section positions[35]

    图  6  基于SPIV的水下航行器流场测量[37]

    Figure  6.  Flow field measurement of underwater vehicle based on SPIV[37]

    图  7  模型船在风洞中的试验示意图[43]

    Figure  7.  Schematic diagram of model ship test in wind tunnel[43]

    图  8  PIV试验时相机安装[44]

    Figure  8.  Camera installation during PIV test [44]

  • [1] TODA Y. Image based measurement around ship hull (Group Discussion 2) [C]//Proceeding of 25th ITTC-Volume Ⅲ. Fukuoka: ITTC Association, 2008:789–821.
    [2] ADRIAN R J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry[J]. Applied Optics, 1984, 23(11): 1690–1691. doi: 10.1364/AO.23.001690
    [3] 吴铁成. 船模尾部流场水下PIV测量技术与流动机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    WU T C. Research on underwater PIV measurement technology and flow mechanism of wake field of model ship[D]. Harbin: Harbin Engineering University, 2019 (in Chinese).
    [4] ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933–947. doi: 10.1007/s00348-006-0212-z
    [5] 蔡声泽. 基于光流计算的复杂流动可视化测速算法研究[D]. 杭州: 浙江大学, 2019.

    CAI S Z. Optical flow-based motion estimation of complex flows [D]. Hangzhou: Zhejiang University, 2019 (in Chinese).
    [6] 金上海. PIV技术的算法研究[D]. 西安: 西安理工大学, 2003.

    JIN S H. Study on algorithms of particle image velocimetry [D]. Xi'an: Xi'an University of Technology, 2003 (in Chinese).
    [7] MARZOUK Y M, HART D P. Asymmetric autocorrelation function to resolve directional ambiguity in PIV images[J]. Experiments in Fluids, 1998, 25(5/6): 401–408. doi: 10.1007/s003480050247
    [8] WESTERWEEL J. Digital particle image velocimetry: theory and application[D]. Delft: Delft University of Technology, 1993.
    [9] 鲍晓利, 李木国. 一种改进的基于FFT的PIV互相关算法[J]. 大连理工大学学报, 2011, 51(3): 417–421. doi: 10.7511/dllgxb201103018

    BAO X L, LI M G. Improvement of FFT-based cross-correlation algorithm for PIV[J]. Journal of Dalian University of Technology, 2011, 51(3): 417–421 (in Chinese). doi: 10.7511/dllgxb201103018
    [10] WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology, 1997, 8(12): 1379–1392. doi: 10.1088/0957-0233/8/12/002
    [11] 王灿星, 林建忠, 山本富士夫. 二维PIV图像处理算法[J]. 水动力学研究与进展, 2001, 16(4): 399–404.

    WANG C X, LIN J Z, FUJIO Y. 2D PIV image processing algorithm[J]. Journal of Hydrodynamics, 2001, 16(4): 399–404 (in Chinese).
    [12] 孙鹤泉, 康海贵, 李广伟. 基于图像互相关的PIV技术及其频域实现[J]. 中国海洋平台, 2002, 17(6): 1–4. doi: 10.3969/j.issn.1001-4500.2002.06.001

    SUN H Q, KANG H G, LI G W. The frequency methods of PIV based on cross-correlation of images[J]. China Offshore Platform, 2002, 17(6): 1–4 (in Chinese). doi: 10.3969/j.issn.1001-4500.2002.06.001
    [13] 阮晓东, 吴锋, 杨华勇, 等. 一种自动检测PIV数据中误矢量的算法[J]. 机械工程学报, 2004, 40(7): 89–92. doi: 10.3321/j.issn:0577-6686.2004.07.018

    RUAN X D, WU F, YANG H Y, et al. Algorithm for automatically detecting spurious vectors in PIV data[J]. Chinese Journal of Mechanical Engineering, 2004, 40(7): 89–92 (in Chinese). doi: 10.3321/j.issn:0577-6686.2004.07.018
    [14] 高琪, 王洪平. PIV速度场坏矢量的本征正交分解处理技术[J]. 实验力学, 2013, 28(2): 199–206.

    GAO Q, WANG H P. On the proper orthogonal decomposition technique for PIV post-processing[J]. Journal of Experimental Mechanics, 2013, 28(2): 199–206 (in Chinese).
    [15] SCARANO F, RIETHMULLER M L. Iterative multigrid approach in PIV image processing with discrete window offset[J]. Experiments in Fluids, 1999, 26(6): 513–523. doi: 10.1007/s003480050318
    [16] JIA L C, ZHU Y D, JIA Y X, et al. Image pre-processing method for near-wall PIV measurements over moving curved interfaces[J]. Measurement Science and Technology, 2017, 28(3): 035201. doi: 10.1088/1361-6501/aa574c
    [17] 王灿星, 林建忠. 三维射流PIV图像处理方法的研究及其精度分析[J]. 实验力学, 2002, 17(1): 68–76. doi: 10.3969/j.issn.1001-4888.2002.01.011

    WANG C X, LIN J Z. An algorithm for the three-dimensional PIV based on cross-correlation analysis[J]. Journal of Experimental Mechanics, 2002, 17(1): 68–76 (in Chinese). doi: 10.3969/j.issn.1001-4888.2002.01.011
    [18] 孙凯. 一种改进的体视PIV算法 [C]//北京力学会第11届学术年会论文摘要集. 北京: 北京力学会, 2005: 44–45.

    SUN K. An improved stereoscopic PIV algorithm [C]//The 11st Annual Meeting of Beijing Society of Chinese Mechanics. Beijing: Beijing Society of Mechanics, 2005: 44–45 (in Chinese).
    [19] 杜海, 李木国, 柳淑学. 双目视觉在粒子图像测量中的研究[J]. 系统工程与电子技术, 2007, 29(11): 1994–1998. doi: 10.3321/j.issn:1001-506x.2007.11.051

    DU H, LI M G, LIU S X. Study of particle image velocimetry systems based on binocular vision[J]. Systems Engineering and Electronics, 2007, 29(11): 1994–1998 (in Chinese). doi: 10.3321/j.issn:1001-506x.2007.11.051
    [20] 蔡声泽, 许超, 高琪, 等. 基于深度神经网络的粒子图像测速算法[J]. 空气动力学学报, 2019, 37(3): 455–461. doi: 10.7638/kqdlxxb-2019.0042

    CAI S Z, XU C, GAO Q, et al. Particle image velocimetry based on a deep neural network[J]. Acta Aerodynamica Sinica, 2019, 37(3): 455–461 (in Chinese). doi: 10.7638/kqdlxxb-2019.0042
    [21] DONG R R, KATZ J, HUANG T T. On the structure of bow waves on a ship model[J]. Journal of Fluid Mechanics, 1997, 346: 77–115. doi: 10.1017/S0022112097005946
    [22] FELLI M, FALCHI M, DUBBIOSO G. Tomographic-PIV survey of the near-field hydrodynamic and hydroacoustic characteristics of a marine propeller[J]. Journal of Ship Research, 2015, 59(4): 201–208. doi: 10.5957/jsr.2015.59.4.201
    [23] GUI L, LONGO J, STERN F. Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512[J]. Experiments in Fluids, 2001, 31(3): 336–346. doi: 10.1007/s003480100293
    [24] GUI L, LONGO J, STERN F. Biases of PIV measurement of turbulent flow and the masked correlation-based interrogation algorithm[J]. Experiments in Fluids, 2001, 30(1): 27–35. doi: 10.1007/s003480000131
    [25] STERN F, LONGO J, PENNA R, et al. International collaboration on benchmark CFD validation data for surface combatant DTMB model 5415 [C]//Proceedings of 23rd ONR Symposium on Naval Hydrodynamics. Val de Reuil:National Academies Press, 2000: 402–422.
    [26] LONGO J, STERN F. Uncertainty assessment for towing tank tests with example for surface combatant DTMB model 5415[J]. Journal of Ship Research, 2005, 49(1): 55–68. doi: 10.5957/jsr.2005.49.1.55
    [27] LONGO J, SHAO J, IRVINE M, et al. Phase-averaged PIV for the nominal wake of a surface ship in regular head waves[J]. Journal of Fluids Engineering, 2007, 129(5): 524–540. doi: 10.1115/1.2717618
    [28] SEO J, SEOL D M, HAN B, et al. Turbulent wake field reconstruction of VLCC models using two-dimensional towed underwater PIV measurements[J]. Ocean Engineering, 2016, 118: 28–40. doi: 10.1016/j.oceaneng.2016.03.021
    [29] FALCHI M, FELLI M, GRIZZI S, et al. SPIV measurements around the DELFT 372 catamaran in steady drift[J]. Experiments in Fluids, 2014, 55(11): 1844. doi: 10.1007/s00348-014-1844-z
    [30] YOON H, GUI L C, BHUSHAN S, et al. Tomographic PIV measurements for surface combatant 5415 straight ahead and static drift 10 and 20 degree conditions [C]//Proceedings of the 30th Symposium on Naval Hydrodynamics. Hobart, Tasmania, Australia: National Academies Press, 2014.
    [31] KLEINWÄCHTER A, EBERT E, KOSTBADE R, et al. Full-scale total wake field PIV-measurements for an enhanced cavitation prediction [C]//Proceedings of the 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, 2014: 388–400.
    [32] KLEINWÄCHTER A, HELLWIG-RIECK K, HEINKE H J, et al. Full-scale total wake field PIV-measurements in comparison with ANSYS CFD calculations: a contribution to a better propeller design process[J]. Journal of Marine Science and Technology, 2017, 22(2): 388–400. doi: 10.1007/s00773-016-0418-6
    [33] KLEINWÄCHTER A, HELLWIG-RIECK K, EBERT E, et al. PIV as a novel full-scale measurement technique in cavitation research [C]//Proceedings of the 4th International Symposium on Marine Propulsors. Austin:The Royal Institution of Naval Architects, 2015: 442–451.
    [34] YOON H, LONGO J, TODA Y, et al. Benchmark CFD validation data for surface combatant 5415 in PMM maneuvers–part II: Phase-averaged stereoscopic PIV flow field measurements[J]. Ocean Engineering, 2015, 109: 735–750.
    [35] 佘文轩, 周广利, 吴铁成, 等. 基于三维粒子图像测速技术的艉流场试验[J]. 哈尔滨工程大学学报, 2019, 40(1): 26–33.

    SHE W X, ZHOU G L, WU T C, et al. Experimental investigation of ship stern flow field through Stereo-PIV[J]. Journal of Harbin Engineering University, 2019, 40(1): 26–33 (in Chinese).
    [36] FU T C, ATSAVAPRANEE P, HESS D E. PIV measurements of the cross-flow wake of a turning submarine model (ONR Body-1) [C]//Proceedings of the 24th Symposium on Naval Hydrodynamics. Fukuoka: National Academies Press, 2002: 665–668.
    [37] FUREBY C, ANDERSON B, CLARKE D, et al. Experimental and numerical study of a generic conventional submarine at 10° yaw[J]. Ocean Engineering, 2016, 116: 1–20. doi: 10.1016/j.oceaneng.2016.01.001
    [38] DI FELICE F. Underwater SPIV probe for towing tank applications [C]//Proceedings of the 25th ITTC-Volume III. Fukuoka: ITTC Association, 2008: 807-841.
    [39] 赵峰, 张军, 徐洁, 等. 尾附体与主体连接形式对尾流场不均匀度影响的PIV测试评估[J]. 船舶力学, 2001, 5(5): 6–14. doi: 10.3969/j.issn.1007-7294.2001.05.002

    ZHAO F, ZHANG J, XU J, et al. PIV estimation on the nonuniform wake flow caused by different junction forms of stern appendages[J]. Journal of Ship Mechanics, 2001, 5(5): 6–14 (in Chinese). doi: 10.3969/j.issn.1007-7294.2001.05.002
    [40] WADCOCK A J, YAMAUCHI G K, HEINECK J T. PIV measurements of the wake of a tendem-rotor helicopter in proximity to a ship [C]//Proceedings of the AHS 4th Decennial Specialist's Conference on Aeromechanics. San Francisco: American Helicopter Society International, 2004.
    [41] 赵维义. PIV测量舰船空气尾流场[J]. 实验流体力学, 2007, 21(1): 31–35. doi: 10.3969/j.issn.1672-9897.2007.01.006

    ZHAO W Y. PIV measurements of the warship air-wake[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 31–35 (in Chinese). doi: 10.3969/j.issn.1672-9897.2007.01.006
    [42] RAHIMPOUR M, OSHKAI P. Experimental investigation of airflow over the helicopter platform of a polar icebreaker[J]. Ocean Engineering, 2016, 121: 98–111. doi: 10.1016/j.oceaneng.2016.05.023
    [43] BARDERA R, BARCALA-MONTEJANO M A, RODRÍGUEZ-SEVILLANO A A, et al. Wind flow investigation over an aircraft carrier deck by PIV[J]. Ocean Engineering, 2019, 178: 476–483. doi: 10.1016/j.oceaneng.2019.03.020
    [44] 孙寒冰, 昝立儒, 孙志远, 等. 基于PIV的客滚船风阻流场研究[J]. 船舶, 2019, 30(1): 17–24. doi: 10.3969/j.issn.1001-9855.2019.01.002

    SUN H B, ZAN L R, SUN Z Y, et al. Research on wind resistance and flow field of Ro-Ro passenger ship based on PIV[J]. Ship, 2019, 30(1): 17–24 (in Chinese). doi: 10.3969/j.issn.1001-9855.2019.01.002
  • 加载中
图(8)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  60
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 录用日期:  2021-11-16
  • 修回日期:  2021-02-01
  • 网络出版日期:  2021-11-30
  • 刊出日期:  2021-12-20

目录

    /

    返回文章
    返回