Key technologies and combat pattern analysis of autonomous flight sonobuoy
-
摘要: 自主飞行声呐浮标是一种能够在管内发射并具备自主飞行能力的声呐浮标,其使传统声呐浮标摆脱了对造价高昂的空中投送平台的依赖,可适装于各类中小型水面舰艇、无人艇平台,并满足对水下战场态势远距离快速感知的作战需求。介绍无人机管内发射技术和声呐浮标技术的发展现状,提出自主飞行声呐浮标的设计思路,总结自主飞行声呐浮标集群作战的关键技术,包括集群控制、集群智能决策、组网探测等,分析自主飞行声呐浮标集群在广域协同探测、多源信息保障、辅助作战效能评估等方面的作战样式,结果可为自主飞行声呐浮标集群的论证、设计、应用提供借鉴。Abstract: Launched from a sonobuoy tube and capable of autonomous flight, the autonomous sonobuoy frees the traditional sonobuoy from dependence on costly aerial delivery platforms. It can be installed on various small and medium-sized surface ships and unmanned vehicles to support the operational needs of long-distance and rapid situation awareness regarding underwater battlefields. By introducing the development of in-tube launch and sonobuoy technology, this paper proposes the design method of the autonomous sonobuoy and summarizes the key technologies of autonomous sonobuoy cluster operations, including cluster control, intelligent decision-making, network detection and so on. Furthermore, the combat patterns of autonomous sonobuoy clusters in wide-area cooperative detection, multi-source information support and evaluation assistance of combat effectiveness are analyzed. The results can provide references for the demand analysis, design and application of autonomous sonobuoy clusters.
-
Key words:
- autonomous flight sonobuoy /
- unmanned swarm operation /
- combat pattern /
- intelligence
-
表 1 声呐浮标类型及其尺寸
Table 1. Types and size of sonobuoys
型号 直径/m 长度/m 最大重量/kg A 0.124 0.914 17.69 G 0.124 0.419 8.16 F 0.124 0.123 5.44 -
[1] 黄吉传, 周德云. 无人机协同作战兰彻斯特方程设计与作战进程预测[J]. 电光与控制, 2018, 25(12): 40–44. doi: 10.3969/j.issn.1671-637X.2018.12.009HUANG J C, ZHOU D Y. Design of Lanchester equation and prediction of operational process for cooperative operation of UAVs[J]. Electronics Optics & Control, 2018, 25(12): 40–44 (in Chinese). doi: 10.3969/j.issn.1671-637X.2018.12.009 [2] OTT J, BIEZAD D. Design of a tube-launched UAV[C]//AIAA 3rd “Unmanned Unlimited” Technical Conference, Workshop and Exhibit. Chicago, Illinois: AIAA, 2004: 1–5. [3] BAWA G S. The design, development and testing of a tube launched UAV[D]. Sydney: The University of Sydney, 2016. [4] 宋怡然, 申超, 李东兵. 美国分布式低成本无人机集群研究进展[J]. 飞航导弹, 2016(8): 17–22.SONG Y R, SHEN C, LI D B. Advance in the research of distributed low cost unmanned aerial vehicle cluster in USA[J]. Winged Missiles Journal, 2016(8): 17–22 (in Chinese). [5] MORTIMER G. SEA CORP successfully launches ground-based compressed carriage UAV[EB/OL]. (2009-07-02)[2020-07-30]. https://www.suasnews.com/2009/07/sea-corp-successfully-launches-ground-based-compressed-carriage-uav/. [6] GlobalMil. Rafael Skylite B UAV[EB/OL]. (2020-04-06)[2020-07-30]. http://www.globalmil.com/military/unmanned_system/israel/rafael/2020/0406/498.html. [7] 王鲁军, 凌青, 袁延艺. 美国声纳装备及技术[M]. 北京: 国防工业出版社, 2011: 128-128.WANG L J, LING Q, YUAN Y Y. American sonar equipment and technology[M]. Beijing: National Defense Industry Press, 2011: 128-128 (in Chinese). [8] 鲜勇, 鲁宏捷, 李佳庆. 国外航空声呐浮标发展综述[J]. 电光与控制, 2019, 26(8): 67–70. doi: 10.3969/j.issn.1671-637X.2019.08.013XIAN Y, LU H J, LI J Q. A review on development of foreign aviation Sonobuoys[J]. Electronics Optics & Control, 2019, 26(8): 67–70 (in Chinese). doi: 10.3969/j.issn.1671-637X.2019.08.013 [9] 王鹏, 程段方, 宋浩田, 等. 美国空射无人机项目综述[C]//中国航天电子技术研究院科学技术委员会2020年学术年会论文集. 北京: 中国航天电子技术研究院科学技术委员会, 2020: 555–563.WANG P, CHENG D F, SONG H T, et al. Overview of the US air-launched UAV program[C]//2020 Annual Conference of Science and Technology Committee of China Academy of Aerospace Electronics Technology. Beijing: Science and Technology Committee of China Academy of Aerospace Electronics, 2020: 555–563 (in Chinese). [10] 凌国民, 王泽民. 声呐浮标技术及其发展方向[J]. 声学与电子工程, 2007(3): 1–5.LING G M, WANG Z M. Sonobuoy technology and its development direction[J]. Acoustics and Electronics Engineering, 2007(3): 1–5 (in Chinese). [11] 张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289–297.ZHANG W, WANG N X, WEI S L, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289–297 (in Chinese). [12] 沈林成, 牛轶峰, 朱华勇. 多无人机自主协同控制理论与方法[M]. 北京: 国防工业出版社, 2013.SHEN L C, NIU Y F, ZHU H Y. Theories and methods of autonomous cooperative control for multiple UAVs[M]. Beijing: National Defense Industry Press, 2013 (in Chinese). [13] 董文奇, 何锋. 大规模UAV编队信息交互拓扑的分级分布式生成[J]. 航空学报, 2021, 42(3): 324380.DONG W Q, HE F. Hierarchical and distributed generation of information interaction topology for large scale UAV formation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 324380 (in Chinese). [14] 牛轶峰, 肖湘江, 柯冠岩. 无人机集群作战概念及关键技术分析[J]. 国防科技, 2013, 34(5): 37–43. doi: 10.3969/j.issn.1671-4547.2013.05.007NIU Y F, XIAO X J, KE G Y. Operation concept and key techniques of unmanned aerial vehicle swarms[J]. National Defense Science & Technology, 2013, 34(5): 37–43 (in Chinese). doi: 10.3969/j.issn.1671-4547.2013.05.007 [15] 刘瑞轩, 张永林. 基于改进蚁群算法的多自主式水下机器人任务分配[J]. 中国舰船研究, 2018, 13(6): 107–112.LIU R X, ZHANG Y L. Task allocation of multiple autonomous underwater vehicles based on improved ant colony algorithm[J]. Chinese Journal of Ship Research, 2018, 13(6): 107–112 (in Chinese). [16] 林晨. 面向无人机集群任务分配的分布式算法研究[D]. 四川: 电子科技大学, 2019.LIN C. Distributed algorithm research for multi-UAV task assignment problem[D]. Sichuan: University of Electronic Science and Technology of China, 2019 (in Chinese). [17] YANG X. Underwater Acoustic Sensor Networks[M]. Boca Raton: Auerbach Publications, 2010. -
ZG2096_en.pdf
-