留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于海冰JH-2模型的极地邮轮冰−船碰撞性能模拟分析

童宗鹏 叶林昌 夏兆旺 薛斌 曹锐

童宗鹏, 叶林昌, 夏兆旺, 等. 基于海冰JH-2模型的极地邮轮冰−船碰撞性能模拟分析[J]. 中国舰船研究, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02085
引用本文: 童宗鹏, 叶林昌, 夏兆旺, 等. 基于海冰JH-2模型的极地邮轮冰−船碰撞性能模拟分析[J]. 中国舰船研究, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02085
TONG Z P, YE L C, XIA Z W, et al. Simulation analysis on collision performance of polar cruise vessel based on JH-2 sea ice model[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02085
Citation: TONG Z P, YE L C, XIA Z W, et al. Simulation analysis on collision performance of polar cruise vessel based on JH-2 sea ice model[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–8 doi: 10.19693/j.issn.1673-3185.02085

基于海冰JH-2模型的极地邮轮冰−船碰撞性能模拟分析

doi: 10.19693/j.issn.1673-3185.02085
基金项目: 工信部高技术船舶科研资助项目(MC-201918-C10)
详细信息
    作者简介:

    童宗鹏,男,1977年生,博士,研究员,博士生导师

    叶林昌,男,1983年生,硕士,高级工程师

    夏兆旺,男,1981年生,博士,教授

    通信作者:

    童宗鹏

  • 中图分类号: U661.4; U674.21

Simulation analysis on collision performance of polar cruise vessel based on JH-2 sea ice model

  • 摘要:   目的  极地邮轮在极地航行中与海面浮冰发生碰撞时,会影响船上旅客的舒适性和船舶的安全性。  方法  基于JH-2模型建立海冰的力学模型,通过平滑粒子伽辽金−有限元耦合方法(SPG-FEM)研究极地邮轮与海冰的碰撞性能,结合海冰的等效应力和等效塑性应变研究碰撞过程中海冰的破坏模式。  结果  结果表明:对于厚度为1.6 m的海冰冰层,极地邮轮与冰层撞击过程中海冰不会出现大的裂纹扩展现象,而只在与船艏直接接触的小范围内发生破坏;在靠近极地邮轮船艏两侧,在非直接碰撞区域的海冰出现了局部应变。  结论  研究结果可为极地邮轮乘客的舒适性和船舶的安全性设计提供技术支撑。
  • 图  1  静水压力与体应变的关系

    Figure  1.  Curves of hydrostatic pressure versus volumetric strain

    图  2  归一化等效应力与压力的关系

    Figure  2.  Curve of normalized equivalent stress versus pressure

    图  3  不同应变率下海冰单轴压缩强度与等效应力曲线

    Figure  3.  Uniaxial compression strength and equivalent stress of sea ice with different strain rate

    图  4  破坏应变与归一化压力的关系

    Figure  4.  Curve of damage strain versus normalized pressure

    图  5  海冰单轴压缩模型

    Figure  5.  Uniaxial compression model of sea ice

    图  6  数值模拟与实验结果对比

    Figure  6.  Comparison between simulation and experimental results

    图  7  平整海冰SPG−FEM耦合模型

    Figure  7.  SPG-FEM coupled model of level sea ice

    图  8  极地邮轮与冰层碰撞分析模型

    Figure  8.  Collision analysis model for polar cruise vessel and sea ice

    图  9  不同时刻海冰的破坏变形

    Figure  9.  Failure and deformation of sea ice at different moments

    图  10  邮轮与冰碰撞产生的冰载荷

    Figure  10.  Sea ice load caused by the collision of cruise vessel with sea ice

    图  11  碰撞过程中不同时刻海冰的等效应力分布图

    Figure  11.  Equivalent stress contour plot of sea ice in the collision process at different moments

    图  12  碰撞过程中不同时刻海冰的等效塑性应变分布图

    Figure  12.  Equivalent plastic strain contour plot of sea ice in the collision process at different moments

    表  1  海冰JH-2模型的参数

    Table  1.   Parameters used by the JH-2 sea ice model

    参数数值参数数值
    密度/(kg·m−3)896.829最大归一化破坏强度0.13
    G/GPa3.383HEL/GPa0.161 3
    A0.711 50PHEL/GPa0.124
    B0.262 44体积系数$\beta $1
    C0.041 40D10.012 93
    M0.343 63D20.377 96
    N0.262 44K1/GPa8.824
    参考应变率/s−11K2/Pa−1.625×1012
    最大抗拉强度/MPa0.6K3/Pa1.884×1014
    下载: 导出CSV
  • [1] LASSERRE F, TÊTU P L. The cruise tourism industry in the Canadian Arctic: analysis of activities and perceptions of cruise ship operators[J]. Polar Record, 2015, 51(1): 24–38. doi: 10.1017/S0032247413000508
    [2] 封培元, 吴永顺, 冯毅, 等. 吊舱推进豪华邮轮在波浪中的功率增加预报试验研究[J]. 中国舰船研究, 2020, 15(5): 11–16.

    FENG P Y, WU Y S, FENG Y, et al. An experimental prediction method of power increases of a cruise ship with podded propulsion in waves[J]. Chinese Journal of Ship Research, 2020, 15(5): 11–16 (in Chinese).
    [3] 顾雅娟. SOLAS 2020破舱稳性要求对邮轮船型开发的影响研究[J]. 中国舰船研究, 2020, 15(5): 25–30.

    GU Y J. The impact of SOLAS 2020 damaged stability requirement on the conceptual design of cruise ships[J]. Chinese Journal of Ship Research, 2020, 15(5): 25–30 (in Chinese).
    [4] WANG C, HU X H, TIAN T P, et al. Numerical simulation of ice loads on a ship in broken ice fields using an elastic ice model[J]. International Journal of Naval Architecture and Ocean Engineering, 2020, 12: 414–427. doi: 10.1016/j.ijnaoe.2020.03.001
    [5] JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials[J]. AIP Conference Proceedings, 1994, 309(1): 981–984.
    [6] STEWART S T, AHRENS T J. Shock properties of H2O ice[J]. Journal of Geophysical Research: Planets, 2005, 110(E3): E03005.
    [7] VOGT C, LAIHEM K, WIEBUSCH C. Speed of sound in bubble-free ice[J]. The Journal of the Acoustical Society of America, 2008, 124(6): 3613–3618. doi: 10.1121/1.2996304
    [8] LIAN J J, OUYANG Q N, ZHAO X, et al. Uniaxial compressive strength and fracture mode of lake ice at moderate strain rates based on a digital speckle correlation method for deformation measurement[J]. Applied Sciences, 2017, 7(5): 495. doi: 10.3390/app7050495
    [9] 徐洪宇, 赖远明, 喻文兵, 等. 人造多晶冰三轴压缩强度特性试验研究[J]. 冰川冻土, 2011, 33(5): 1120–1126.

    XU H Y, LAI Y M, YU W B, et al. Experimental research on triaxial strength of polycrystalline ice[J]. Journal of Glaciology and Geocryology, 2011, 33(5): 1120–1126 (in Chinese).
    [10] PETROVIC J J. Review Mechanical properties of ice and snow[J]. Journal of Materials Science, 2003, 38(1): 1–6. doi: 10.1023/A:1021134128038
    [11] 王博. 考虑船−冰相互干扰的冰区航行舰船冰载荷计算方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    WANG B. Investigation on the calculation method of ice-sailing ship's ice load considering hydrodynamic interaction between ship and floating ice[D]. Harbin: Harbin Engineering University, 2018 (in Chinese).
    [12] LANGE M A, AHRENS T J. The dynamic tensile strength of ice and ice‐silicate mixtures[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B2): 1197–1208. doi: 10.1029/JB088iB02p01197
    [13] 陈晓东, 王安良, 季顺迎. 海冰在单轴压缩下的韧−脆转化机理及破坏模式[J]. 中国科学: 物理学 力学 天文学, 2018, 48(12): 24–35.

    CHEN X D, WANG A L, JI S Y. The study on Brittle-ductile transition mechanism and failure mode of sea ice under uniaxial compression[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48(12): 24–35.
    [14] CUETO-FELGUEROSO L, COLOMINAS I, MOSQUEIRA G, et al. On the Galerkin formulation of the smoothed particle hydrodynamics method[J]. International Journal for Numerical Methods in Engineering, 2004, 60(9): 1475–1512. doi: 10.1002/nme.1011
    [15] WONG S, SHIE Y. Galerkin based smoothed particle hydrodynamics[J]. Computers & Structures, 2009, 87(17–18): 1111–1118.
    [16] WANG S L N. A large-deformation Galerkin SPH method for fracture[J]. Journal of Engineering Mathematics, 2011, 71(3): 305–318. doi: 10.1007/s10665-011-9455-7
    [17] WU Y C, WU C T. Simulation of impact penetration and perforation of metal targets using the smoothed particle Galerkin method[J]. Journal of Engineering Mechanics, 2018, 144(8): 04018057. doi: 10.1061/(ASCE)EM.1943-7889.0001470
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-22
  • 修回日期:  2021-01-12
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回