留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平整冰层中海工结构冰载荷研究方法综述

余朝歌 田于逵 王纬波

余朝歌, 田于逵, 王纬波. 平整冰层中海工结构冰载荷研究方法综述[J]. 中国舰船研究, 2021, 16(5): 1–15 doi: 10.19693/j.issn.1673-3185.02084
引用本文: 余朝歌, 田于逵, 王纬波. 平整冰层中海工结构冰载荷研究方法综述[J]. 中国舰船研究, 2021, 16(5): 1–15 doi: 10.19693/j.issn.1673-3185.02084
YU C G, TIAN Y K, WANG W B. Review of research on ice loading of offshore structures in level ice fields[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–15 doi: 10.19693/j.issn.1673-3185.02084
Citation: YU C G, TIAN Y K, WANG W B. Review of research on ice loading of offshore structures in level ice fields[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–15 doi: 10.19693/j.issn.1673-3185.02084

平整冰层中海工结构冰载荷研究方法综述

doi: 10.19693/j.issn.1673-3185.02084
基金项目: 国家高技术船舶科研计划资助项目(2017-614)
详细信息
    作者简介:

    余朝歌,男,1997年生,硕士生

    田于逵,男,1969年生,硕士,研究员

    通信作者:

    田于逵

  • 中图分类号: U661.1

Review of research on ice loading of offshore structures in level ice fields

  • 摘要: 海工结构与平整冰层作用时,海冰的物理力学特性和冰层的失效模式会严重影响结构冰载荷的大小。首先,简要介绍海冰的物理力学特性,简述平整冰层与海工结构作用的物理过程;然后,从公式估算方法、试验测量方法和数值计算方法这3个方面对平整冰层中海工结构冰载荷的研究进展进行梳理。通过讨论公式估算方法的优缺点和适用性、试验测量方法研究的重难点以及数值计算方法的发展趋势,发现模型试验测量方法是有效的结构冰载荷研究手段。所做工作给出了海工结构冰载荷的研究趋势和面临的问题,可为领域学者的研究提供一定的指导意义。
  • 图  1  应变速率对海冰压缩强度的影响[16]

    Figure  1.  Effects of strain rate on the compressive strength of sea ice

    图  2  冰层与直立结构相互作用失效模式图[18]

    Figure  2.  Failure mode of ice-vertical structure interaction

    图  3  冰层与斜面结构作用的物理过程[21]

    Figure  3.  The physical process of ice-slope structure interaction

    图  4  斜面结构与平整冰层作用时的受力示意图[24]

    Figure  4.  Schematic diagram of the force on the slope structure interacting with level ice

    图  5  Norströmsgrund灯塔及压力板示意图[43]

    Figure  5.  Schematic diagram of load panels on Norströmsgrund lighthouse

    图  6  静冰载荷模型试验测量装置

    Figure  6.  Measuring device of model test for stastice ice load

    图  7  典型动冰载荷模型试验测量装置

    Figure  7.  Measuring devices of model test for dynamic ice load

    图  8  不同网格尺寸下黏聚单元模型模拟结果对比图[75]

    Figure  8.  Comparison of simulation results based on CZM at different grid sizes

  • [1] WEEKS W F, ASSUR A. The mechanical properties of sea ice[R]. Hanover: U. S. Army Cold Regions Research and Engineering Laboratory, 1967.
    [2] WEEKS W F. Understanding the variation of the physical properties of sea ice[R]. [S. l. ]: US Army Materiel Command, Cold Regions Research & Engineering Laboratory, 1967.
    [3] ZUBOV N N. L'dy Arktiki (arctic ice), Izdatel'stvo Glavsevmorputi, Moscow, 1945[M]. San Diego: United States Navy Electronics Lab, 1963.
    [4] ASSUR A. Composition of sea ice and its tensile strength[M]. [S. l. ]: University of California Libraries, 1960.
    [5] ANDERSON D L. The physical constants of sea ice[J]. Research, 1960, 13: 310–318.
    [6] PETRICH C, EICKEN H. Growth, structure and properties of sea ice[M]//THOMAS D N, DIECKMANN G S. Sea Ice. Oxford: Wiley-Blackwell Publishing Ltd, 2010: 23-77.
    [7] WEEKS W F, ACKLEY S F. The growth, structure, and properties of sea ice[M]//UNTERSTEINER N. The Geophysics of Sea Ice. Boston: Springer, 1986: 9-164.
    [8] Bureau Veritas. Ice characteristics and ice/structure interactions: Guidance Note NI 565 DT R00 E[S]. Neuilly Sur Seine Cedex: Bureau Veritas, 2010: 565.
    [9] BUTKOVICH T R. Recommended standards for small-scale ice strength tests[M]. US: US Army Snow Ice and Permafrost Research Establishment, Corps of Engineers, 1958.
    [10] BUTKOVICH T R. Some physical properties of ice from the Tuto Tunnel and Ramp, Thule, Greenland[M]. Wilmette: US Army Snow Ice and Permafrost Research Establishment, 1959.
    [11] FRANKENSTEIN G E. Ring tensile strength studies of ice[R]. Hanover: Cold Regions Research and Engineering Lab, 1969.
    [12] SINHA N K. Closed-loop controlled tensile strength testing method for multi-year sea ice[Z]. NRC Publications Archive, 1989.
    [13] COX G F N, RICHTER-MENGE J A. Tensile strength of multi-year pressure ridge sea ice samples[J]. Journal of Energy Resources Technology, 1985, 103(3): 375–380.
    [14] TIMCO G W, WEEKS W F. A review of the engineering properties of sea ice[J]. Cold Regions Science and Technology, 2010, 60(2): 107–129.
    [15] WEEKS W F, ANDERSON D L. An experimental study of strength of young sea ice[J]. Transactions American Geophysical Union, 1958, 39(4): 641–647. doi: 10.1029/TR039i004p00641
    [16] SCHULSON E M, DUVAL P. Creep and fracture of ice[M]. Cambridge: Cambridge University Press, 2009.
    [17] HENDRIKSE H. Ice-induced vibrations of vertically sided offshore structures[D]. Delft: Delft University of Technology, 2017.
    [18] OWEN C. Ice-induced vibrations of vertically sided model structures: comparison of structures with circular and rectangular cross-section subjected to the frequency lock-in regime[D]. Delft: Delft University of Technology, 2017.
    [19] 岳前进, 杜小振, 毕祥军, 等. 冰与柔性结构作用挤压破坏形成的动荷载[J]. 工程力学, 2004, 21(1): 202–208. doi: 10.3969/j.issn.1000-4750.2004.01.037

    YUE Q J, DU X Z, BI X J, et al. Dynamic ice loads during interaction with vertical compliant structures[J]. Engineering Mechanics, 2004, 21(1): 202–208 (in Chinese). doi: 10.3969/j.issn.1000-4750.2004.01.037
    [20] 屈衍. 基于现场实验的海洋结构随机冰荷载分析[D]. 大连: 大连理工大学, 2006.

    QU Y. Random ice load analysis on offshore structures based on field tests[D]. Dalian: Dalian University of Technology, 2006 (in Chinese).
    [21] 许宁. 锥体海洋结构的冰荷载研究[D]. 大连: 大连理工大学, 2011.

    XU N. Research on ice force of conical offshore structures[D]. Dalian: Dalian University of Technology, 2011 (in Chinese).
    [22] 岳前进, 毕祥军, 于晓, 等. 锥体结构的冰激振动与冰力函数[J]. 土木工程学报, 2003, 36(2): 16–19, 32. doi: 10.3321/j.issn:1000-131X.2003.02.004

    YUE Q J, BI X J, YU X, et al. Ice-induced vibration and ice force function of conical structure[J]. China Civil Engineering Journal, 2003, 36(2): 16–19, 32 (in Chinese). doi: 10.3321/j.issn:1000-131X.2003.02.004
    [23] KORZHAVIN K N. Action of ice on engineering structures[R]. Hanover: U. S. Army Cold Regions Research and Engineering Laboratory, 1971.
    [24] International Organization of Standards. Petroleum and natural gas industries-arctic offshore structures: ISO 19906[S]. Europe: International Standardization for Organization, 2010.
    [25] SAPl2A Group. Planning, designing and constructing fixed offshore platform's SAPl2A[R]. 11th ed. SAPl2A Group, 1980.
    [26] 陆钦年, 段忠东, 欧进萍, 等. 河冰对桥墩作用的冰荷载计算方法(Ⅱ)——冰压力计算公式[J]. 自然灾害学报, 2002, 11(4): 112–118. doi: 10.3969/j.issn.1004-4574.2002.04.019

    LU Q N, DUAN Z D, OU J P, et al. Calculational method of river ice loads on piers (Ⅱ): the formula for ice pressure[J]. Journal of Natural Disasters, 2002, 11(4): 112–118 (in Chinese). doi: 10.3969/j.issn.1004-4574.2002.04.019
    [27] 中国海洋石油总公司. 中国海海冰条件及应用规定: Q/HSn 3000-2002[S]. 北京: 中国海洋石油总公司, 2002.

    China National Offshore Oil Corporation. Regulations for offshore ice condition & application in China sea: Q/HSn 3000-2002[S]. Beijing: China National Offshore Oil Corporation, 2002 (in Chinese).
    [28] 隋吉学. 作用于斜坡结构物上海冰荷载的二维计算[J]. 海洋环境科学, 1996, 15(2): 70–73.

    SUI J X. A two-dimensional bending failure model of sea ice force on an inclined structure[J]. Marine Environmental Science, 1996, 15(2): 70–73 (in Chinese).
    [29] 隋吉学. 作物于斜坡结构物上海冰荷载的三维计算[J]. 海洋环境科学, 1997, 16(2): 15–19.

    SUI J X. Three dimensional bending failure model of sea ice force on an inclined structure[J]. Marine Environmental Science, 1997, 16(2): 15–19 (in Chinese).
    [30] CROASDALE K R. Ice forces on fixed, rigid structures[R]. Hanover: Working Group on Ice Forces on Structures, U. S. Army CRREL, 1980: 34−106.
    [31] CROASDALE K, CAMMAERT G, METGE M. A method for the calculation of sheet ice loads on sloping structures[J]. IAHR Symposium on Ice, 1994, 28(3): 874–885.
    [32] RALSTON T D. Ice force design considerations for conical offshore structures[C]//Proceedings of the 4th International Conference on Port and Ocean Engineering under Arctic Conditions. Canada: Newfoundland Memorial University, 1977: 741-752.
    [33] FREDERKING R M W. Dynamic ice forces on an inclined structure[M]//TRYDE P. Physics and Mechanics of Ice, International Union of Theoretical and Applied Mechanics. Berlin, Heidelberg: Springer, 1980: 104-116.
    [34] 屈衍, 张大勇, 许宁, 等. 《中国海冰条件及应用》与ISO 19906冰荷载规定比较[J]. 哈尔滨工程大学学报, 2018, 39(4): 629–634.

    QU Y, ZHANG D Y, XU N, et al. Comparison of the ice load regulations in ISO 19906 and “the sea ice conditions and its application in China”[J]. Journal of Harbin Engineering University, 2018, 39(4): 629–634 (in Chinese).
    [35] BRUUN P K, GUDMESTAD O T. A comparison of ice loads from level ice and ice ridges on sloping offshore structures calculated in accordance with different international and national standards[C]//25th International Conference on Offshore Mechanics and Arctic Engineering. Hamburg: ASME, 2006: 655–665.
    [36] HTG. Recommendations of the committee for waterfront structures harbours and waterways EAU 2012[M]. 9th ed. Berlin, Germany: Ernst & Sohn, 2015: 205.
    [37] DNVGL. Loads and site conditions for wind turbines: DNVGL-ST-0437[S]. Høvik: DNVGL, 2016.
    [38] JEFFERIES M G, ROGERS B T, HARDY M D. Instrumentation and monitoring of an offshore arctic platform[C]//Conference on Instrumentation in Geotechnical Engineering, Nottingham. London: Thomas Telford, 1989.
    [39] MASTERSON D M, BRUCE J C, SISODIYA R, et al. Beaufort sea exploration: past and future[C]. Proceedings Offshore Technology Conference. Houston, Texas: OTC, 1991.
    [40] JEFFERIES M, ROGERS B, HARDY M, et al. Ice load measurement on Molikpaq: methodology and accuracy[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. Montréal: POAC, 2011.
    [41] JEFFERIES M G, WRIGHT W H. Dynamic response of Molikpak to ice-structure interaction[C]//Proceedings of the 7th International Conference Offshore Mech. and Arctic Eng.. Houston, USA, 201–220.
    [42] BJERKÅS M. Review of measured full scale ice loads to fixed structures[C]//ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. San Diego: ASME, 2007: 131–140.
    [43] GÜRTNER A, BJERKÅS M, FORSBERG J, et al. Numerical modelling of a full scale ice event[C]//20th IAHR International Symposium on Ice. Lahti: IAHR, 2010: 77–88.
    [44] FREDERKING R, LI L F, KUBAT I. Review of confederation bridge ice forces: winter 2008-2010[C]//The 21st International Offshore and Polar Engineering Conference. Maui: ISOPE, 2011.
    [45] GUO F W, YUE Q J, BI X J, et al. Model test of ice-structure interaction[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu: ASME, 2009: 135–142.
    [46] 黄焱, 史庆增, 宋安. 冰力模型实验中的模型律[J]. 冰川冻土, 2003, 25(增刊 2): 352–355.

    HUANG Y, SHI Q Z, SONG A. The application of scaling laws to ice force model tests[J]. Journal of Glaciology and Geocryology, 2003, 25(Supp 2): 352–355 (in Chinese).
    [47] TIMCO G. Ice forces on structures: physical modelling techniques[Z]. NRC Publications Archive, 1984.
    [48] LINDHOLM J E, MAKELA K, BO Z C. Structure-ice interaction for a Bohai bay oil production project[C]//The Third International Offshore and Polar Engineering Conference. Singapore: International Society of Offshore and Polar Engineers, 1993.
    [49] BARKER A, TIMCO G, GRAVESEN H, et al. Ice loading on Danish wind turbines: Part 1: dynamic model tests[J]. Cold Regions Science and Technology, 2005, 41(1): 1–23. doi: 10.1016/j.coldregions.2004.05.002
    [50] GRAVESEN H, SØRENSEN S L, VØLUND P, et al. Ice loading on Danish wind turbines: Part 2. analyses of dynamic model test results[J]. Cold Regions Science and Technology, 2005, 41(1): 25–47. doi: 10.1016/j.coldregions.2004.05.009
    [51] SODHI D S, TAKEUCHI T, NAKAZAWA N, et al. Medium-scale indentation tests on sea ice at various speeds[J]. Cold Regions Science and Technology, 1998, 28(3): 161–182. doi: 10.1016/S0165-232X(98)00017-2
    [52] SODHI D S. Crushing failure during ice–structure interaction[J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1889–1921.
    [53] LU W J, HØYLAND K, SERRE N, et al. Ice load measurement by tactile sensor in model scale test in relation to rubble ice transport on arctic offshore structures (RITAS)[C]//Proceedings of the HYDRALAB IV Joint User Meeting. Lisbon: HYDRALAB, 2014.
    [54] HÖDERATH A, ZIEMER G. Local design pressures for fixed offshore structures–utilization of scale model tests[C]//23rd IAHR International Symposiumon Ice. Ann Arbor: IAHR, 2016: 4872921.
    [55] 邵晶杰. 破冰桩间距对冰荷载影响的试验研究及数值模拟方法的探索[D]. 天津: 天津大学, 2008.

    SHAO J J. The experimental research of the influence of pile distance on ice load and the exploration of numerical simulation[D]. Tianjin: Tianjin University, 2008 (in Chinese).
    [56] 史庆增, 黄焱, 宋安, 等. 锥体冰力的实验研究[J]. 海洋工程, 2004, 22(1): 88–92. doi: 10.3969/j.issn.1005-9865.2004.01.013

    SHI Q Z, HUANG Y, SONG A, et al. Experimental study of ice force on conical structures[J]. The Ocean Engineering, 2004, 22(1): 88–92 (in Chinese). doi: 10.3969/j.issn.1005-9865.2004.01.013
    [57] 关湃, 黄焱, 万军, 等. 基于模型试验的导管架平台抗冰锥体优化设计[J]. 中国海洋平台, 2017, 32(4): 7–13. doi: 10.3969/j.issn.1001-4500.2017.04.002

    GUAN P, HUANG Y, WAN J, et al. Optimal design of jacket platforms' anti—icing conical structures based on model tests[J]. China Offshore Platform, 2017, 32(4): 7–13 (in Chinese). doi: 10.3969/j.issn.1001-4500.2017.04.002
    [58] ONKEN G, EVERS K U, HAASE A, et al. Ice model tests with a cylindrical structure to investigate dynamic ice-structure interaction[C]//Proceedings of the International Conference on Port and Ocean Engineering under Arctic Conditions, POAC. Espoo: POAC, 2013.
    [59] 黄焱. 冰激海洋平台振动的动力模型试验研究[D]. 天津: 天津大学, 2004.

    HUANG Y. The study of ice induced vibration on marine platforms by dynamic model test[D]. Tianjin: Tianjin University, 2004 (in Chinese).
    [60] CORNETT A M, TIMCO G W. Ice loads on an elastic model of the Molikpaq[J]. Applied Ocean Research, 1998, 20(1/2): 105–118.
    [61] ZIEMER G, EVERS K U, VOOSEN C. Influence of structural compliance and slope angle on ice loads and dynamic response of conical structures[C]//ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. Newfoundland: ASME, 2015.
    [62] ZIEMER G, EVERS K U. Model tests with a compliant cylindrical structure to investigate ice-induced vibrations[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(4): 041501. doi: 10.1115/1.4033712
    [63] 黄焱, 史庆增, 宋安. 冰激柔性直立桩结构振动的模型试验[J]. 天津大学学报, 2007, 40(5): 530–535.

    HUANG Y, SHI Q Z, SONG A. Model test of ice-induced vibration on compliant vertical pile[J]. Journal of Tianjin University, 2007, 40(5): 530–535 (in Chinese).
    [64] PEYTON H R. Sea ice forces[J]. National Research Council of Canada, Technical Memo, 1968: 92.
    [65] BLENKARN K A. Measurement and analysis of ice forces on cook inlet structures[C]//Offshore Technology Conference. Houston: Offshore Technology Conference, 1970.
    [66] SAND B, HORRIGMOE G. Finite element analysis of breaking ice forces on conical structures[C]//Proceedings of the 14th International Symposium on Ice. Potsdam, Berlin, 1998: 475–482.
    [67] SAND B, HORRIGMOE G. Simulations of ice ridge forces on conical structures[C]//The Eleventh International Offshore and Polar Engineering Conference. Stavanger: International Society of Offshore and Polar Engineers, 2001.
    [68] SAND B. Nonlinear finite element simulations of ice forces on offshore structures[D]. Swedish: Luleå University of Technology, 2008.
    [69] BROWN T G, MORSY U A. Modelling of continuous crushing of ice in front of offshore structures[J]. Canadian Journal of Civil Engineering, 1995, 22(3): 544–550. doi: 10.1139/l95-063
    [70] CHOI K, HWANG O J. Continuum damage modelling for the estimation of ice load under indentation[C]//The Eighth International Offshore and Polar Engineering Conference. Montreal: International Society of Offshore and Polar Engineers, 1998.
    [71] LU W J, LUBBAD R, LØSET S, et al. Cohesive zone method based simulations of ice wedge bending: a comparative study of element erosion, CEM, DEM and XFEM[C]//The 21st IAHR International Symposium on Ice. Dalian: IAHR, 2012: 920–938.
    [72] KONUK I, GÜRTNER A, YU S K. A cohesive element framework for dynamic ice-structure interaction problems—Part I: review and formulation[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu: ASME, 2009: 33–41.
    [73] KONUK I, GÜRTNER A, YU S K. A cohesive element framework for dynamic ice-structure interaction problems—Part II: implementation[C]//ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu: ASME, 2009: 185–193.
    [74] KONUK I, YU S K. A cohesive element framework for dynamic ice-structure interaction problems: Part III—case studies[C]//ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai: ASME, 2010: 801-809.
    [75] PANG S D, ZHANG J, POH L H, et al. The modelling of ice-structure interaction with cohesive element method: limitations and challenges[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. Trondheim: POAC, 2015.
    [76] 龚榆峰. 极地船舶冰载荷直接计算法研究[D]. 武汉: 华中科技大学, 2017.

    GONG Y F. Research on direct analysis approaches of polar ship ice loads[D]. Wuhan: Huazhong University of Science & Technology, 2017 (in Chinese).
    [77] 石础. 基于有限元方法的海洋工程结构物与海冰碰撞机理研究[D]. 上海: 上海交通大学, 2017.

    SHI C. Investigation on mechanism of marine structure-sea ice collision using finite element method[D]. Shanghai: Shanghai Jiao Tong University, 2017 (in Chinese).
    [78] WILLIAMS J R, MUSTOE G G W, WORGAN K. Force transfer and behavior of rubble piles[C]//Proceedings of International Association of Hydraulic Engineering and Research Symposium on Ice, 1986: 615–626.
    [79] HOPKINS M A. Numerical simulation of systems of multitudinous polygonal blocks[R]. Hanover, Germany: Cold Regions Research and Engineering Lab, 1992.
    [80] HOPKINS M A. Onshore ice pile-up: a comparison between experiments and simulations[J]. Cold Regions Science and Technology, 1997, 26(3): 205–214. doi: 10.1016/S0165-232X(97)00015-3
    [81] SELVADURAI A P S, SEPEHR K. Two-dimensional discrete element simulations ofice–structure interaction[J]. International Journal of Solids and Structures, 1999, 36(31/32): 4919–4940.
    [82] MICHAEL L. A three dimensional discrete element simulation of ice sheet impacting a 60° conical structure[C]//Proceedings of the International Conference on Port and Ocean Engineering Under Arctic Conditions. Ottawa: POAC, 2001.
    [83] KATSURAGI K, KAWASAKI T, SETO H, et al. Distinct element simulation of ice-structure interactions[C]//The 8th International Offshore and Polar Engineering Conference. Montreal: International Society of Offshore and Polar Engineers, 1998.
    [84] PAAVILAINEN J, TUHKURI J, POLOJÄRVI A. 2D combined finite‐discrete element method to model multi‐fracture of beam structures[J]. Engineering Computations, 2009, 26(6): 21.
    [85] 狄少丞, 许宁, 季顺迎. 海冰与锥体海洋平台结构相互作用的离散元分析[C]//2014颗粒材料计算力学会议论文集. 兰州: 中国力学学会, 2014.

    DI S C, XU N, JI S Y. Analysis of sea ice-pyramidal offshore platform structure interaction by distinct element[C]//Proceedings of 2014 Conference on Computational Mechanics of Granular Materials. Lanzhou: Chinese Society of Mechanics, 2014 (in Chinese).
    [86] 邵帅, 周国丰, 王帅霖, 等. 基于离散元−有限元模型的冰激锥体海洋平台结构振动分析[J]. 计算力学学报, 2015(5): 662–667. doi: 10.7511/jslx201505014

    SHAO S, ZHOU G F, WANG S L. Ice induced vibration of concial offshore platform structure based on discrete element model-finite element model[J]. Chinese Journal of Computational Mechanics, 2015(5): 662–667 (in Chinese). doi: 10.7511/jslx201505014
    [87] 王帅霖, 季顺迎. 锥体导管架海洋平台冰激振动的DEM-FEM耦合分析及高性能算法[J]. 海洋学报, 2017, 39(12): 98–108.

    WANG S L, JI S Y. Ice induced vibration of conical platform based on coupled DEM-FEM model with high efficiency algorithm[J]. Haiyang Xuebao, 2017, 39(12): 98–108 (in Chinese).
    [88] 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720–1739. doi: 10.6052/0459-1879-19-250

    LIU L, YIN Z Y, JI S Y. High-performance dilated polyhedral based DEM for ice loads on ship and offshore platform structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720–1739 (in Chinese). doi: 10.6052/0459-1879-19-250
  • 加载中
图(8)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  43
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-21
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-05-17

目录

    /

    返回文章
    返回