留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力效应的船体远场冰载荷测量与识别

何帅康 陈晓东 孔帅 季顺迎

何帅康, 陈晓东, 孔帅, 等. 基于动力效应的船体远场冰载荷测量与识别[J]. 中国舰船研究, 2021, 16(5): 1–10 doi: 10.19693/j.issn.1673-3185.02065
引用本文: 何帅康, 陈晓东, 孔帅, 等. 基于动力效应的船体远场冰载荷测量与识别[J]. 中国舰船研究, 2021, 16(5): 1–10 doi: 10.19693/j.issn.1673-3185.02065
HE S K, CHEN X D, KONG S, et al. Measurement and identification of ice loads on hull structures in far field based on dynamic effects[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–10 doi: 10.19693/j.issn.1673-3185.02065
Citation: HE S K, CHEN X D, KONG S, et al. Measurement and identification of ice loads on hull structures in far field based on dynamic effects[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–10 doi: 10.19693/j.issn.1673-3185.02065

基于动力效应的船体远场冰载荷测量与识别

doi: 10.19693/j.issn.1673-3185.02065
基金项目: 国家重点研发计划资助项目(2017YFE0111400, 2016YFC1401505);国家自然科学基金资助项目(51639004, 41576179)
详细信息
    作者简介:

    何帅康,男,1997年生,硕士生。研究方向:船舶结构冰载荷测量与识别。E-mail: 408936364@mail.dlut.edu.cn

    陈晓东,男,1987年生,博士,工程师。研究方向:海冰力学与热力学。E-mail: chenxiaodong@dlut.edu.cn

    孔帅,男,1990年生,博士,工程师

    季顺迎,男,1972年生,博士,教授,博士生导师。研究方向:极地船舶与海洋工程。E-mail: jisy@dlut.edu.cn

    通信作者:

    季顺迎

  • 中图分类号: U661.4; U675.5+7

Measurement and identification of ice loads on hull structures in far field based on dynamic effects

  • 摘要:   目的  提出一种基于动力效应的冰载荷反演识别方法。  方法  针对船−冰相互作用过程和结构响应特性之间的卷积关系,使用格林函数建立描述冰载荷的卷积积分方程。针对“天恩”号极地运输船的北极航行,安装应变传感器测量船艏区域的冰激响应。对于求解矩阵的病态性与测量中的随机噪声,引入正则化方法解决识别计算中的不适定问题,并获取动冰载荷时程的数值近似稳定解。依托“天恩”号极地运输船的北极航行实测数据,通过船体在海冰作用下的应变响应对冰载荷进行反演识别。  结果  结果表明,格林函数能够有效识别远场冰载荷的时间历程。  结论  载荷识别的有效性受应变信号强度的影响较为明显。此外,在不同海冰破坏模式下,浮冰尺寸和船−冰接触面积是影响冰载荷特征的关键因素。
  • 图  1  “天恩”号极地运输船的航行路线及沿途冰况

    Figure  1.  The arctic route of Tian'en and ice conditions

    图  2  “天恩”号极地运输船的监测区域及测点信息

    Figure  2.  The monitoring area and gauge map of Tian'en

    图  3  脉冲函数表示的载荷时程曲线

    Figure  3.  The load history represented by the impulse function

    图  4  冰载荷识别的流程图

    Figure  4.  The flow chart of ice load identification

    图  5  “天恩”号测试区域的有限元模型

    Figure  5.  The FE model of monitored area of Tian'en

    图  6  数值计算的测点、加载区域示意图以及单位冲击载荷下的格林函数响应

    Figure  6.  The sketches of loading area, gauging matrix and the response of Green's function under specific surface loading in the numerical simulation

    图  7  数值算例的计算结果

    Figure  7.  The results of the numerical simulation

    图  8  “天恩”号船体与浮冰的相互作用

    Figure  8.  The interaction between Tian'en and the ice floe

    图  9  不同工况下的肋骨剪切应变差值测量结果

    Figure  9.  The measured results of frame shear strain difference under various navigation conditions

    图  10  不同工况的测点及子加载区域设置

    Figure  10.  The monitored area and gauge map under different conditions

    图  11  不同工况下的冰载荷识别结果

    Figure  11.  The identified ice load under different conditions

    图  12  不同工况下的最大冰载荷时程曲线与测点的最大应变响应时程曲线

    Figure  12.  The time-history curves of maximum ice load and maximum strain response of measuring point under different conditions

    图  13  不同工况下的总冰载荷时程曲线

    Figure  13.  The time history curve of global ice load under different conditions

    表  1  “天恩”号极地运输船船体主要参数

    Table  1.   Main dimensions of polar class carrier vessel Tian'en

    船长/m型宽/m型深/m设计吃水/m设计航速/kn载重量/t
    189.9928.515.81114.837 124
    下载: 导出CSV

    表  2  “天恩”号极地运输船的有限元模型主要参数

    Table  2.   Key parameters of the FE model of Tian'en

    参数数值
    弹性模量E/GPa209
    泊松比λ0.3
    密度ρ/(kg·m−3)7 850
    下载: 导出CSV

    表  3  计算工况主要参数

    Table  3.   The main parameters of navigation conditions

    编号日期UTC
    时间
    航速
    /(m·s–1)
    吃水
    /m
    冰状冰厚
    /m
    海冰
    破坏模式
    工况12019-08-0212:025.146.5小冰盘1.2局部挤压、
    整体劈裂
    工况22019-08-033:084.246.5冰块1.5翻转滑移
    下载: 导出CSV
  • [1] 高世龙, 刘加钊, 张晓. 冰上丝绸之路背景下商船北极航行的经济性评析[J]. 对外经贸实务, 2018(1): 26–29. doi: 10.3969/j.issn.1003-5559.2018.01.006

    GAO S L, LIU J Z, ZHANG X. The economic evaluation of Arctic shipping under the background of the Polar Silk Road[J]. Practice in Foreign Economic Relations and Trade, 2018(1): 26–29 (in Chinese). doi: 10.3969/j.issn.1003-5559.2018.01.006
    [2] 王超, 封振, 李兴, 等. 航行于碎冰区船舶冰阻力与冰响应探析[J]. 中国舰船研究, 2018, 13(1): 73–78. doi: 10.3969/j.issn.1673-3185.2018.01.011

    WANG C, FENG Z, LI X, et al. Analysis on ice resistance and ice response of ships sailing in brash ice[J]. Chinese Journal of Ship Research, 2018, 13(1): 73–78 (in Chinese). doi: 10.3969/j.issn.1673-3185.2018.01.011
    [3] 蔡伟, 朱凌. 冰碰载荷下船体板弹塑性动力响应分析[J]. 中国舰船研究, 2020, 15(6): 155–161. doi: 10.19693/j.issn.1673-3185.01804

    CAI W, ZHU L. Elastic-plastic responses of ship plates under ice impact loading[J]. Chinese Journal of Ship Research, 2020, 15(6): 155–161 (in Chinese). doi: 10.19693/j.issn.1673-3185.01804
    [4] 刘璐, 胡冰, 季顺迎. 破冰船引航下极地船舶结构冰荷载的离散元分析[J]. 水利水运工程学报, 2020(3): 11–18.

    LIU L, HU B, JI S Y. Discrete element analysis of ice loads on polar ships under pilotage of icebreaker[J]. Hydro-Science and Engineering, 2020(3): 11–18 (in Chinese).
    [5] 韩端锋, 乔岳, 薛彦卓, 等. 冰区航行船舶冰阻力研究方法综述[J]. 船舶力学, 2017, 21(8): 1041–1054. doi: 10.3969/j.issn.1007-7294.2017.08.014

    HAN D F, QIAO Y, XUE Y Z, et al. A review of ice resistance research methods for ice-going ships[J]. Journal of Ship Mechanics, 2017, 21(8): 1041–1054 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.08.014
    [6] LEIRA B, BØRSHEIM L, ESPELAND Ø, et al. Ice-load estimation for a ship hull based on continuous response monitoring[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2009, 223(4): 529–540. doi: 10.1243/14750902JEME141
    [7] SUYUTHI A, LEIRA B J, RISKA K. A generalized probabilistic model of ice load peaks on ship hulls in broken-ice fields[J]. Cold Regions Science and Technology, 2014, 97: 7–20. doi: 10.1016/j.coldregions.2013.09.012
    [8] SUOMINEN M, KARHUNEN J, BEKKER A, et al. Full-scale measurements on-board PSRV S. A. Agulhas II in the Baltic Sea[C]//POAC '13: Proceedings of the 22nd International Conference on Port and Ocean Engineering under Arctic Conditions. Espoo, Finland: POAC, 2013.
    [9] SUOMINEN M, KUJALA P, ROMANOFF J, et al. Influence of load length on short-term ice load statistics in full-scale[J]. Marine Structures, 2017, 52: 153–172. doi: 10.1016/j.marstruc.2016.12.006
    [10] KOTILAINEN M, VANHATALO J, SUOMINEN M, et al. Predicting ice-induced load amplitudes on ship bow conditional on ice thickness and ship speed in the Baltic Sea[J]. Cold Regions Science and Technology, 2017, 135: 116–126. doi: 10.1016/j.coldregions.2016.12.006
    [11] FREDERKING R, JOHNSTON M. Comparison of local ice pressures on the CCGS Terry Fox with other data[C]//The Eighteenth International Offshore and Polar Engineering Conference. Vancouver, Canada: ISOPE, 2008.
    [12] LEE T K, LEE J H, KIM H, et al. Field measurement of local ice pressures on the ARAON in the Beaufort Sea[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(4): 788–799.
    [13] KWON Y H, LEE T K, CHOI K. A study on measurements of local ice pressure for ice breaking research vessel "ARAON" at the Amundsen Sea[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, 7(3): 490–499. doi: 10.1515/ijnaoe-2015-0035
    [14] UTO S, OKA S, MURAKAMI C, et al. Ice load exerted on the hull of icebreaker PM Teshio in the south sea of okhotsk[C]//POAC '05: Proceedings of the 18th International Conference on Port and Ocean Engineering under Arctic Conditions. Potsdam, NY, USA: POAC, 2005.
    [15] 季顺迎, 雷瑞波, 李春花, 等. “雪龙”号科考船在冰区航行的船体振动测量研究[J]. 极地研究, 2017, 29(4): 427–435.

    JI S Y, LEI L B, LI C H, et al. Measurement of ice-induced local vibration of R/V Xuelong icebreaker during its navigation in ice-covered fields[J]. Chinese Journal of Polar Research, 2017, 29(4): 427–435 (in Chinese).
    [16] 王键伟, 段庆林, 季顺迎. 冰区航行中船舶结构冰载荷的现场测量与反演方法研究进展[J].力学进展, 2020, 50: 202003.

    WANG J W, DUAN Q L, JI S Y. Research progress of field measurements and inversion methods of ice loads on ship structure during ice navigation[J]. Advances in Mechanics, 2020, 50: 202003(in Chinese).
    [17] 刘瀛昊, 佟福山, 高良田. 基于原型测量的极地航行船舶船体冰载荷分析[J]. 振动与冲击, 2017, 36(7): 226–233.

    LIU Y H, TONG F S, GAO L T. Ice-induced load analysis for hull of an ice-going vessel based on full-scale measurement[J]. Journal of Vibration and Shock, 2017, 36(7): 226–233 (in Chinese).
    [18] 孔帅, 崔洪宇, 季顺迎. 船体结构冰载荷反演方法及试验验证[J]. 中国机械工程, 2020, 31(3): 281–288. doi: 10.3969/j.issn.1004-132X.2020.03.005

    KONG S, CUI H Y, JI S Y. Ice load identification method of ship structures and experimental verification[J]. China Mechanical Engineering, 2020, 31(3): 281–288 (in Chinese). doi: 10.3969/j.issn.1004-132X.2020.03.005
    [19] 崔洪宇, 胡大士, 孔帅, 等. 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61(1): 109–119. doi: 10.3969/j.issn.1000-4882.2020.01.011

    CUI H Y, HU D S, KONG S, et al. Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61(1): 109–119 (in Chinese). doi: 10.3969/j.issn.1000-4882.2020.01.011
    [20] 吴坤铭. 应变片布置及组桥方法在工程中的应用研究[J]. 安徽建筑大学学报, 2019, 27(3): 1–6.

    WU K M. Application research of strain gage layout and bridging method in engineering[J]. Journal of Anhui Institute of Architecture & Industry, 2019, 27(3): 1–6 (in Chinese).
    [21] 刘杰. 动态载荷识别的计算反求技术研究[D]. 长沙: 湖南大学, 2011.

    LIU J. Research on computational inverse techniques in dynamic load identification[D]. Changsha: Hunan University, 2011 (in Chinese).
    [22] 韩旭, 刘杰, 李伟杰, 等. 时域内多源动态载荷的一种计算反求技术[J]. 力学学报, 2009, 41(4): 595–602. doi: 10.3321/j.issn:0459-1879.2009.04.017

    HAN X, LIU J, LI W J, et al. A computational inverse technique for reconstruction of multisource loads in time domain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(4): 595–602 (in Chinese). doi: 10.3321/j.issn:0459-1879.2009.04.017
    [23] 孙兴盛, 刘杰, 丁飞, 等. 基于矩阵摄动的随机结构动态载荷识别技术[J]. 机械工程学报, 2014, 50(13): 148–156. doi: 10.3901/JME.2014.13.148

    SUN X S, LIU J, DING F, et al. Identification method of dynamic loads for stochastic structures based on matrix perturbation theory[J]. Journal of Mechanical Engineering, 2014, 50(13): 148–156 (in Chinese). doi: 10.3901/JME.2014.13.148
    [24] 王福昌, 胡顺田. 求解病态线性方程组的模拟退火算法[J]. 大学数学, 2009, 25(4): 69–72. doi: 10.3969/j.issn.1672-1454.2009.04.014

    WANG F C, HU S T. Simulated annealing algorithm for solving III-conditioned linear systems[J]. College Mathematics, 2009, 25(4): 69–72. doi: 10.3969/j.issn.1672-1454.2009.04.014
    [25] 卢立勤, 乔百杰, 张兴武, 等. 共轭梯度最小二乘迭代正则化算法在冲击载荷识别中的应用[J]. 振动与冲击, 2016, 35(22): 176–182, 196.

    LU L Q, QIAO B J, ZHANG X W, et al. Application of conjugate gradient least squares iteration regularization algorithm in impact load identification[J]. Journal of Vibration and Shock, 2016, 35(22): 176–182, 196 (in Chinese).
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  40
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-10-19
  • 网络出版日期:  2020-12-10

目录

    /

    返回文章
    返回