Design and simulation verification of throttle orifice plate for large flow and high-pressure differential feedwater recirculation system
-
摘要:目的 为了解决舰船蒸汽动力系统大流量高压差给水再循环管路因空化和汽蚀而导致的管路腐蚀及振动等问题,提出多级节流孔板设计方案。方法 根据多级节流孔板几何级数递减的设计规则,选取孔板级数、计算孔板孔径并校核孔板厚度。以某船给水再循环管路作为设计对象,开展实船严苛工况下的Mixture多相流模型数值仿真。结果 仿真结果表明:采用2片和1片节流孔板时,发生了不同程度的空化及汽蚀;采用3片节流孔板时,给水再循环管路基本不会发生空化和汽蚀现象。结论 该研究成果可为实船给水再循环管路中节流孔板后的管路汽蚀损坏问题整改提供参考。Abstract:Objectives In order to solve the problems of pipeline corrosion and vibration caused by cavitation in large flow and high-pressure differential feedwater recirculation pipelines of marine steam power system, a design scheme for multi-stage throttle orifice plates is proposed.Methods According to the design rule of the decreasing geometric series of multi-stage throttle orifice plates, the selection of orifice series, calculation of orifice diameter and verification of orifice thickness are carried out. Taking the feedwater recirculation pipeline of a ship as the design object, the numerical simulation of a Mixture multiphase flow model is carried out under the severe working conditions of a real ship.Results The simulation results show that when two or one throttle orifice plates are used, cavitation occurs to varying degrees in the feed water recirculation pipeline, but when three throttle orifice plates are used, cavitation will not occur.Conclusions The results of this study can provide references for the rectification of pipeline cavitation damage behind throttle orifice plates in the feedwater recirculation pipelines of real ships.
-
-
表 1 节流孔板的设计数据
Table 1 Design data for throttle orifice plate
设计参数 孔板级数 第1级 第2级 第3级 设计压力$p$/MPa 10 10 10 内径$ {d_{\text{i}}} $/mm 90 90 90 许用应力$ {[\sigma ]^t} $/MPa 153 153 153 级前压力/MPa 8.61 3.76 1.34 级后压力/MPa 3.76 1.34 0.13 级压差$ \Delta P $/MPa 4.84 2.42 1.22 饱和压力$ {P_{\text{w}}} $/MPa 0.12 0.12 0.12 临界压力比系数$ {F_{\text{f}}} $ 0.94 0.94 0.94 阻塞压差$ \Delta {P_{\text{s}}} $/MPa 6.88 2.95 2.61 $ \Delta P $<$ \Delta {P_{\text{s}}} $ 是 是 是 孔板孔径$ {D_{\text{k}}} $/mm 35 41 49 孔板厚度$ \delta $/mm 15 15 15 -
[1] 高远, 黄彪, 吴钦, 等. 绕水翼空化流动及振动特性的实验研究[J]. 力学学报, 2015, 47(6): 1009–1016. doi: 10.6052/0459-1879-15-173 GAO Y, HUANG B, WU Q, et al. Experimental investigation of the vibration characteristics of hydrofoil in cavitating flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1009–1016 (in Chinese). doi: 10.6052/0459-1879-15-173
[2] 季斌, 程怀玉, 黄彪, 等. 空化水动力学非常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 428–479. JI B, CHENG H Y, HUANG B, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 428–479 (in Chinese).
[3] 赵宇, 王国玉, 黄彪, 等. 非定常空化流动涡旋运动及其流体动力特性[J]. 力学学报, 2014, 46(2): 191–200. doi: 10.6052/0459-1879-13-177 ZHAO Y, WANG G Y, HUANG B, et al. Study of turbulent vortex and hydraulic dynamics in transient sheet/cloud cavitating flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2): 191–200 (in Chinese). doi: 10.6052/0459-1879-13-177
[4] 黄书才, 穆春玉, 杨勤, 等. 船用多级泵的水力仿真及汽蚀性能优化分析[J]. 船海工程, 2017, 46(1): 58–61. doi: 10.3963/j.issn.1671-7953.2017.01.014 HUANG S C, MU C Y, YANG Q, et al. Hydraulic simulation and cavitation performance optimization of a marine multistage pump[J]. Ship & Ocean Engineering, 2017, 46(1): 58–61 (in Chinese). doi: 10.3963/j.issn.1671-7953.2017.01.014
[5] 晁文雄, 王均儒, 王飞, 等. 复合式离心泵汽蚀特性的数值模拟与试验分析[J]. 中国空间科学技术, 2019, 39(3): 64–70. CHAO W X, WANG J R, WANG F, et al. Numerical simulation and experimental analysis for cavitation in composite centrifugal pump[J]. Chinese Space Science and Technology, 2019, 39(3): 64–70 (in Chinese).
[6] 彭健, 何世权. 高压调节阀结构改进与汽蚀仿真[J]. 液压与气动, 2019(3): 120–125. doi: 10.11832/j.issn.1000-4858.2019.03.020 PENG J, HE S Q. Structural improvement and cavitation simulation of high pressure regulating valve[J]. Chinese Hydraulics & Pneumatics, 2019(3): 120–125 (in Chinese). doi: 10.11832/j.issn.1000-4858.2019.03.020
[7] 杨元龙, 郑文. 船用大压降给水管道多级孔板设计及节流特性研究[J]. 船海工程, 2015, 44(3): 164–168. doi: 10.3963/j.issn.1671-7953.2015.03.039 YANG Y L, ZHENG W. Design of the multistage orifice plate and throttle characteristics for marine feed pipe with large pressure drop[J]. Ship & Ocean Engineering, 2015, 44(3): 164–168 (in Chinese). doi: 10.3963/j.issn.1671-7953.2015.03.039
[8] 王元, 王少明, 于雷. 船舶核动力装置一回路小破口失水事故处置规程研究[J]. 船海工程, 2008, 37(5): 102–106. doi: 10.3963/j.issn.1671-7953.2008.05.029 WANG Y, WANG S M, YU L. Study on disposition of small-break loss-of-coolant accident in marine nuclear power plant[J]. Ship & Ocean Engineering, 2008, 37(5): 102–106 (in Chinese). doi: 10.3963/j.issn.1671-7953.2008.05.029
[9] 杨元龙. 船用锅炉给水再循环管路上的节流孔板设计与优化[J]. 中国舰船研究, 2015, 10(5): 99–103. doi: 10.3969/j.issn.1673-3185.2015.05.016 YANG Y L. Design and optimization of the throttle orifice of marine boiler feed recycling pipes[J]. Chinese Journal of Ship Research, 2015, 10(5): 99–103 (in Chinese). doi: 10.3969/j.issn.1673-3185.2015.05.016
[10] 张宝峰. 多级节流孔板的设计计算[J]. 西北电力技术, 2005, 33(5): 27–28,30. ZHANG B F. Design & calculation of multi-stage throttle plate[J]. Northwest China Electric Power, 2005, 33(5): 27–28,30 (in Chinese).
[11] 中华人民共和国能源部. 火力发电厂汽水管道设计技术规定: DL/T 5054–1996[S]. 北京: 中国电力出版社, 1996. Ministry of Energy of the People's Republic of China. Code for design of thermal power plant steam/water piping: DL/T 5054–1996[S]. Beijing: China Electric Power Press, 1996 (in Chinese).
[12] SUN B Z, YANG Y L. Numerically investigating the influence of tube support plates on thermal-hydraulic characteristics in a steam generator[J]. Applied Thermal Engineering, 2013, 51(1/2): 611–622. doi: 10.1016/j.applthermaleng.2012.10.009