留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同外形声呐的水动力及流噪声数值模拟

邓云 傅何琪 广超越 陈威 林永水

邓云, 傅何琪, 广超越, 等. 不同外形声呐的水动力及流噪声数值模拟[J]. 中国舰船研究, 2021, 16(4): 1–7 doi: 10.19693/j.issn.1673-3185.02051
引用本文: 邓云, 傅何琪, 广超越, 等. 不同外形声呐的水动力及流噪声数值模拟[J]. 中国舰船研究, 2021, 16(4): 1–7 doi: 10.19693/j.issn.1673-3185.02051
DENG Y, FU H Q, GUANG C Y, et al. Numerical simulation on hydrodynamic and flow noise of different shape sonars[J]. Chinese Journal of Ship Research, 2021, 16(4): 1–7 doi: 10.19693/j.issn.1673-3185.02051
Citation: DENG Y, FU H Q, GUANG C Y, et al. Numerical simulation on hydrodynamic and flow noise of different shape sonars[J]. Chinese Journal of Ship Research, 2021, 16(4): 1–7 doi: 10.19693/j.issn.1673-3185.02051

不同外形声呐的水动力及流噪声数值模拟

doi: 10.19693/j.issn.1673-3185.02051
基金项目: 中央高校基础研究基金资助项目(WUT:2019IVA059);博士科研启动基金资助项目(WUT:40120268)
详细信息
    作者简介:

    邓云,男,1998年生,硕士生。研究方向:水动力及流噪声。E-mail:1569168520@qq.com

    陈威,男,1988年生,博士,研究方向:海洋工程水动力学。E-mail:whutcw01@126.com

    通信作者:

    陈威

  • 中图分类号: U661.44; U666.7

Numerical simulation on hydrodynamic and flow noise of different shape sonars

  • 摘要:   目的  为降低传统圆形声呐外表面流噪声,设计了3种不同的声呐外形(圆形、椭圆形以及方形),并对其外表面水动力和流噪声进行了研究。  方法  基于Fluent软件中的标准$k - \varepsilon$湍流计算模型和Lighthill声类比方法对3种不同外形声呐外表面的流场和声场进行分析。  结果  结果显示:方形的声呐升力系数幅值和阻力系数均值最大,其次是圆形,最小的是椭圆形;各方案声呐水动力差异是由于边界层分离点及尾涡的不同引起的。对比流噪声结果发现,圆形的总声压级最大,椭圆形的最小。圆形和方形呈现了“正8字”的偶极子声源特性,声辐射最大值在垂直于来流方向;而椭圆呈现“倒8字”的偶极子声源特性,最大值在水平来流方向。  结论  可用椭圆形形声呐替代传统的圆形声呐,结果作为声呐外形设计的参考。
  • 图  1  (a) 不同外形的声呐计算域图

    Figure  1.  Calculation domain of sonar with different shapes

    图  2  不同外形声呐升阻力系数

    Figure  2.  Lift and drag coefficient of sonar with different shapes

    图  3  不同外形声呐频谱

    Figure  3.  Spectrum diagram of sonar with different shapes

    图  4  不同外形声呐的涡量图

    Figure  4.  Vorticity picture of sonar with different shapes

    图  5  圆形声呐监测点的定义图

    Figure  5.  Definition diagram of monitoring points for circular sonar

    图  6  不同外形声呐的声压频谱曲线

    Figure  6.  Sound pressure picture of sonar with different shapes

    图  7  不同外形声呐声场外辐射指向特性

    Figure  7.  Directivity of radiation field of sonar with different shapes

    表  1  $Re = 3\;900$的圆柱绕流计算结果和参数

    Table  1.   Calculation results and parameters of flow around cylinder at $Re = 3\;900$

    算例$\Delta x/$mm$\Delta t/$s$\overline {{C_{\rm{D}}}} $$St$
    A1 0.06 0.000 1 1.10 0.229
    A2 0.000 2 1.08 0.227
    A3 0.000 5 1.08 0.225
    A4 0.1 0.000 1 1.09 0.234
    A5 0.000 2 1.08 0.237
    A6 0.000 5 1.07 0.237
    A7 0.3 0.000 1 1.09 0.232
    A8 0.000 2 1.08 0.239
    A9 0.000 5 1.05 0.236
    端木玉[19] 1.53 0.233
    詹昊[20] 1.26 0.220
    下载: 导出CSV

    表  2  各测点对应的总声压

    Table  2.   The total sound pressure corresponding to each measuring point

    测点总声压级/dB
    圆形方形椭圆
    1156.36136.94122.74
    2134.39129.52123.51
    3133.49124.15121.02
    4145.17146.98112.55
    5145.18146.99112.57
    695.7090.9944.75
    下载: 导出CSV
  • 刘明星, 许欣然, 冯亮, 等. 高航速下艇艏声呐平台水动力噪声特性研究[C]//2019年全国声学大会论文集. 深圳: 中国声学学会, 2019: 117–118.

    LIU M X, XU X R, FENG L, et al. The characteristics research of hydrodynamic noise in bow sonar area at high speed[C]//Proceedings of the 2019 National Acoustics Conference. Shenzhen: Acoustic Society of China, 2019: 117–118 (in Chinese).
    张娟, 李天匀, 刘敬喜, 等. 空间不均匀湍流边界层激励下声呐腔自噪声统计能量分析[J]. 中国舰船研究, 2007, 2(6): 24–29.

    ZHANG J, LI T Y, LIU J X, et al. SEA analytical model of sonar's self-noise induced by turbulent boundary layer[J]. Chinese Journal of Ship Research, 2007, 2(6): 24–29 (in Chinese).
    张小锋, 刘国庆, 赵成, 等. 声类比水下圆柱绕流声学特性研究[J]. 舰船科学技术, 2019, 41(6): 120–124, 128.

    ZHANG X F, LIU G Q, ZHAO C, et al. Research on acoustic properties of flow around underwater cylinders based on acoustic analogue[J]. Ship Science and Technology, 2019, 41(6): 120–124, 128 (in Chinese).
    王建春, 吴乘胜, 王星, 等. 中等雷诺数方柱绕流的直接数值模拟及涡系分析[J]. 船舶力学, 2019, 23(8): 893–905.

    WANG J C, WU C S, WANG X, et al. Direct numerical simulation of medium Reynolds number flow past square cylinder and analysis of vortex structures[J]. Journal of Ship Mechanics, 2019, 23(8): 893–905 (in Chinese).
    彭华康, 李天匀, 朱翔. 湍流脉动压力下椭球声呐腔水动力自噪声分析[J]. 中国舰船研究, 2011, 6(4): 37–42. doi: 10.3969/j.issn.1673-3185.2011.04.008

    PENG H K, LI T Y, ZHU X. Self noise of hydrodynamic component for ellipsoid-shaped sonar cavity induced by turbulent fluctuating pressure[J]. Chinese Journal of Ship Research, 2011, 6(4): 37–42 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.04.008
    KO S H, NUTTALL A H. Analytical evaluation of flush-mounted hydrophone array response to the corcos turbulent wall pressure spectrum[J]. The Journal of the Acoustical Society of America, 1991, 90(1): 579–588. doi: 10.1121/1.401232
    KO S H. Performance of various shapes of hydrophones in the reduction of turbulent flow noise[J]. The Journal of the Acoustical Society of America, 1993, 93(3): 1293–1299. doi: 10.1121/1.405414
    KO S H. Performance of shaded, rectangular hydrophones in the reduction of turbulent flow noisea)[J]. The Journal of the Acoustical Society of America, 1993, 94(3): 1681–1687. doi: 10.1121/1.408141
    王斌, 汤渭霖, 范军. 水听器非轴线布放时的拖线阵流噪声响应[J]. 声学学报, 2008(5): 402–408.

    WANG B, TANG W L, FAN J. Flow induced noise calculations for non-axially distributed hydrophones in towed arrays[J]. Acta Acustica, 2008(5): 402–408 (in Chinese).
    王晓林, 上官经邦, 王世闯, 等. 拖曳线列阵拖曳噪声抑制的试验研究[J]. 声学技术, 2017, 36(4): 123–126.

    WANG X L, SHANGGUAN J B, WANG S C, et al. Experimental research on towing noise suppression of towed line array[J]. Technical Acoustics, 2017, 36(4): 123–126 (in Chinese).
    刘明星, 许欣然, 夏铁坚. 潜艇水动力噪声对声呐声基阵影响分析[J]. 声学与电子工程, 2020(1): 18–22.

    LIU M X, XU X R, XIA T J. Analysis of the influence of submarine hydrodynamic noise on sonar acoustic array[J]. Acoustics and Electronics Engineering, 2020(1): 18–22 (in Chinese).
    龙双丽, 聂宏, 许鑫. 不同雷诺数下圆柱绕流气动噪声数值模拟[J]. 声学技术, 2011, 30(2): 111–116.

    LONG S L, NIE H, XU X. Numerical simulation of noise induced by flow around a cylinder at different Reynolds number[J]. Technical Acoustics, 2011, 30(2): 111–116 (in Chinese).
    LYRINTZIS A S. Surface integral methods in computational aeroacoustics: from the (CFD) near-field to the (Acoustic) far-field[J]. International Journal of Aeroacoustics, 2003, 2(2): 95–128. doi: 10.1260/147547203322775498
    唐科范, FRANKE J. 用解NS方程和FW-H积分的混合方法计算圆柱绕流噪声[J]. 水动力学研究与进展, 2009, 24(2): 190–199.

    TANG K F, FRANKE J. Numerical simulation of noise induced by flow around cylinder using the hybrid method with the solutions of NS equation and FW-H integration[J]. Chinese Journal of Hydrodynamics, 2009, 24(2): 190–199 (in Chinese).
    LUO K H, LAI H. A hybrid LES-acoustic analogy method for computational aeroacoustics[M]//LAMBALLAIS E, FRIEDRICH R, GEURTS B J, et al. Direct and Large-Eddy Simulation VI. Dordrecht: Springer Netherlands, 2006: 537-544.
    何鸿涛. 圆柱绕流及其控制的数值模拟研究[D]. 北京: 北京交通大学, 2009.

    HE H T. Numerical simulation to characteristics and control of flow around a circular cylinder[D]. Beijing: Beijing Jiaotong University, 2009 (in Chinese).
    郑力铭. ANSYS Fluent 15.0流体计算从入门到精通[M]. 北京: 电子工业出版社, 2015.

    ZHENG L M. ANSYS Fluent 15.0 fluid calculation from entry to proficiency[M]. Beijing: Publishing House of Electronics Industry, 2015 (in Chinese).
    AI Y H, FENG D K, YE H K, et al. Unsteady numerical simulation of flow around 2-D circular cylinder for high Reynolds numbers[J]. Journal of Marine Science and Application, 2013, 12(2): 180–184. doi: 10.1007/s11804-013-1183-0
    端木玉, 万德成. 雷诺数为3900时三维圆柱绕流的大涡模拟[J]. 海洋工程, 2016, 34(6): 11–20.

    DUAN M Y, WAN D C. Large-eddy simulation of the flow past a cylinder with Re=3 900[J]. The Ocean Engineering, 2016, 34(6): 11–20 (in Chinese).
    詹昊, 李万平, 方秦汉, 等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12): 129–132.

    ZHAN H, LI W P, FANG Q H, et al. Simulation calculation of flow around a cylinder under different Reynolds numbers[J]. Journal of Wuhan University of Technology, 2008, 30(12): 129–132 (in Chinese).
    林平. 钝体绕流数值模拟[D]. 杭州: 杭州电子科技大学, 2015.

    LIN P. The numerical simulation of turbulent flow over a blunt body[D]. Hangzhou: Hangzhou Dianzi University, 2015 (in Chinese).
    李玲, 刘沛清, 邢宇, 等. 亚临界雷诺数圆柱绕流远场气动噪声实验研究[J]. 北京航空航天大学学报, 2016, 42(5): 977–983.

    LI L, LIU P Q, XING Y, et al. Far-field aeroacoustic experimental study of flow around a circular cylinder at subcritical Reynolds number[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 977–983 (in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  126
  • HTML全文浏览量:  34
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-12-07
  • 网络出版日期:  2021-03-23

目录

    /

    返回文章
    返回