留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极区航海导航与定位保障技术发展综述

程建华 刘佳鑫 赵琳

程建华, 刘佳鑫, 赵琳. 极区航海导航与定位保障技术发展综述[J]. 中国舰船研究, 2021, 0(X): 1–14 doi: 10.19693/j.issn.1673-3185.02045
引用本文: 程建华, 刘佳鑫, 赵琳. 极区航海导航与定位保障技术发展综述[J]. 中国舰船研究, 2021, 0(X): 1–14 doi: 10.19693/j.issn.1673-3185.02045
CHENG J H, LIU J X, ZHAO L. Survey on polar marine navigation and positioning system[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–14 doi: 10.19693/j.issn.1673-3185.02045
Citation: CHENG J H, LIU J X, ZHAO L. Survey on polar marine navigation and positioning system[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–14 doi: 10.19693/j.issn.1673-3185.02045

极区航海导航与定位保障技术发展综述

doi: 10.19693/j.issn.1673-3185.02045
基金项目: 国家自然科学基金资助项目(61633008);黑龙江省杰出青年基金资助项目(JJ2018JQ0059);中央高校基本科研业务费专项基金资助项目(3072020CFT0403)
详细信息
    作者简介:

    程建华,男,1977年生,博士,教授。研究方向:极区导航。E-mail:ins_cheng@163.com

    刘佳鑫,男,1995年生,博士生。研究方向:极区惯性导航。E-mail:liujiaxin1@hrbeu.edu.cn

    赵琳,男,1968年生,博士,教授。研究方向:极区导航。E-mail:zhaolin@hrbeu.edu.cn

    通信作者:

    刘佳鑫

  • 中图分类号: U666.11

Survey on polar marine navigation and positioning system

  • 摘要: 航海导航系统是各类军民海洋运载器实现极区顺利到达以及极区安全航行的先决条件。然而,南北极区特殊环境造成航海导航系统性能下降甚至无法应用。为从根源上认知航海导航系统极区的应用问题,在系统阐述海洋运载器导航系统极区应用发展史的基础上,从地球运动学、地球物理场、海洋环境和地理环境4个方面,全面分析极区特殊环境对海洋运载器主要导航系统的影响,并通过极区航海导航系统的研究现状及未来趋势的展望,为极区航海导航技术及未来发展提供有益参考。
  • 图  1  格网北向示意图

    Figure  1.  Schematic diagram of grid north

    图  2  俄罗斯MRK-11卫导罗经

    Figure  2.  Satellite compass MRK-11

    图  3  美国海军潜艇冰下航线图(1976—2000年)

    Figure  3.  US Navy submarine route map under ice

    图  4  gωie趋于同向

    Figure  4.  g and ωie tends in the same direction

    图  5  地磁北极位置变化图[28]

    Figure  5.  Map of the position of the magnetic north pole[28]

    图  6  传统经纬圈定义方式

    Figure  6.  Traditional latitude and longitude circle definition

    图  7  垂线经纬度定义方式

    Figure  7.  Vertical latitude and longitude definition

    图  8  极球面投影

    Figure  8.  Polar stereographic projection

    图  9  横轴墨卡托投影

    Figure  9.  Transverse Mercator projection

    图  10  日晷投影

    Figure  10.  gnomonic projection

    表  1  极区环境与中低纬度环境差异对比

    Table  1.   Polar environment and its differences between medium and low latitude environment

    环境要素极区环境中低纬度与极区差异比对影响对象
    地球运动学环境 地球自转导致地球自转角速度ωie与重力矢量g趋于同向 以45°N与88°N为例,ωieg间夹角分别为45°和2° 惯性导航
    地球公转和黄赤交角的影响,导致极区存在极昼极夜以及二者交替时的晨光昏影现象 靠近极点处,极昼极夜分别接近6个月,而出现极昼极夜现象的最低纬度为南北纬66°34′,仅1天 天文导航
    地球物理场环境 极区重力实测数据较少,导致极区存在重力异常且未知的区域,极区高精度重力场模型难以构建 2019年,加利福尼亚大学全球海域自由空间重力数据库V29发布,仅覆盖南北纬80.738°内的区域 惯性导航、重力匹配
    地磁线在极区收敛并汇聚于地磁极点,且地磁极点在移动 2016年地磁北极位于86.4°N 166.3°W,地磁极点以每天20.5 m的速度移动[4] 磁罗经、地磁匹配
    太阳发出的带电粒子沿着磁场线进入极区,导致极区内电离层闪烁频繁,磁暴强烈 极区电离层闪烁和磁暴是低纬区的2-10倍 磁罗经、地磁匹配、卫星导航
    极区海洋环境 极区的水文和气象数据大量缺失且多数极区海图无实测数据,航海资料相对较少 极区测量存在窗口期,实测数据较少,而中低纬度区域不存在这一问题 电子海图
    极区声学信道特性,包括海洋环境噪声、冰下水域信号传播规律等相对特殊且随着气候变暖而出现新变化 2014年,美国海军研究实验室(ONR)明确浅海声学、深海声学和北极声学作为水声研究计划中的3大学科 声学导航
    极区气候严寒,北极海域常年有冰层覆盖,导致水下声信标布放困难,水天线难以观测,潜器等水下海洋运载器航行安全难以保障 相对而言,中低纬度区域冰层覆盖情况较少且发生于冬季 声学导航、天文导航、测冰设备
    极区常出现低云、雾、冻烟、雪等现象,导致能见度受限,无法识别水天线 极区特别是季节交替时节易出现此类现象,而中低纬度区域很少发生 天文导航
    地理位置环境 极区北向变化快,南北极点北向缺失 以45°N与88°N为例,2处沿纬度圈方向,1 n mile对应经差分别为1.414'和28.65' 惯性导航
    经线汇集导致墨卡托投影无法适用极区 在85°N处,纬差为3°时,长度变形可达59.68% 电子海图
    极区时区变化快,南北极点无时区概念 以45°N与88°N为例,2处沿纬度圈方向,1个时区对应的距离分别为636.4和31.4 n mile 时钟设备
    下载: 导出CSV

    表  2  极球面投影、高斯投影及日晷投影在高纬度的长度变形对比

    Table  2.   Length deformation comparison of polar stereographic projection, Gaussian projection and gnomonic projection in high latitude

    $\theta \left( {\theta {\rm{ = }}\dfrac{\pi }{2} - \varphi } \right)$极球面投影长度变形高斯投影长度变形日晷投影长度变形
    经度λ任意λ=0°λ=30°λ=60°λ=90°极小值极大值
    0000000
    0.001900.00100.00290.00380.00380.0077
    10°0.007700.00380.01150.01540.01540.0311
    15°0.017300.00850.02610.03530.03530.0718
    20°0.031100.01500.04700.06420.06420.1325
    下载: 导出CSV
  • [1] STROEVE J, SERREZE M, DROBOT S, et al. Arctic sea ice extent plummets in 2007[J]. Eos, Transactions American Geophysical Union, 2013, 89(2): 13–14.
    [2] KHON V C, MOKHOV I I, LATIF M, et al. Perspectives of northern sea route and northwest passage in the twenty-first century[J]. Climatic Change, 2010, 100(3/4): 757–768. doi: 10.1007/s10584-009-9683-2
    [3] BERKMAN P A, VYLEGZHANIN A N. Environmental security in the arctic ocean[M]. Dordrecht: Springer, 2013: 135.
    [4] Secretary of the Air Force. US. Air Force Pamphlet 11-216 -Flying Operations-Air Navigation[M]. United States: Dept of the Air Force, 2001.
    [5] MACLURE K C. Polar navigation[J]. Precis, RCAF Central Navigation School, Rivers, Manitoba. (Reproduction of Original Paper written at RAF No. 31 Air Navigation School, Port Albert, Ontario, Canada in October 1941).
    [6] KENDALL E C. Gyro/Grid navigation[J]. The Journal of Navigation, 1956, 9(4): 429–435. doi: 10.1017/S0373463300036699
    [7] North Polar Flights of Aries: EANS Report 45/24[R]. RAF Empire Air Navigation School, 1945.
    [8] DYER G C. Polar navigation—a new transverse Mercator technique[J]. The Journal of Navigation, 1971, 24(4): 484–495. doi: 10.1017/S0373463300022335
    [9] LYON W K. The navigation of arctic polar submarines[J]. The Journal of Navigation, 1984, 37(2): 155–179. doi: 10.1017/S0373463300023328
    [10] GERNET E S. Navigation sea and air charts with additional substitute coordinates[J]. Hydrographic Notes, 1933, 5: 25–43.
    [11] KAVRAISKY V V. Concerning maps of rectangular projection of small distortion and their application to navigation[J]. Memoirs of Hydrography, 1938, 2: 5–26.
    [12] Professor Guiseppe Neeumeyer. On the determination of position of vessels in polar regions[J]. Rivista Aeronautics, Rome, 1933, 8: 263–278.
    [13] WALSH D. Oceans: 1931: the first nautilus north pole expedition[J]. U.S. Naval Institute Proceedings, 2005.
    [14] LEVINSON E, TER HORST J, WILLCOCKS M. The next generation marine inertial navigator is here now[C]//Proceedings of the 1994 IEEE Position, Location and Navigation Symposium. Las Vegas: IEEE, 1994.
    [15] ANDREEV A G, ERMAKOV V C, MAFTER M B, et al. High latitude trials of modern Russian marine compasses[C]//Proceedings of the 2006 IEEE/ION Position, Location, and Navigation Symposium. Coronado: IEEE, 2006: 636-644.
    [16] HAGGER A J. Air navigation in high latitudes[J]. Polar Record, 1950, 5(39): 440–449. doi: 10.1017/S0032247400044922
    [17] MOORE J D D. I—Special problems in polar regions[J]. The Journal of Navigation, 1951, 4(2): 126–135. doi: 10.1017/S0373463300032914
    [18] BERESFORD P C. Map projections used in polar regions[J]. The Journal of Navigation, 1953, 6(1): 29–37. doi: 10.1017/S0373463300035712
    [19] 杨元喜, 徐君毅. 北斗在极区导航定位性能分析[J]. 武汉大学学报·信息科学版, 2016, 41(1): 15–20.

    YANG Y X, XU J Y. Navigation performance of BeiDou in polar area[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 15–20 (in Chinese).
    [20] 郭洪贵, 王世林. 极区航行天文定位的方法[J]. 大连海事大学学报, 1989, 15(3): 43–48.

    GUO H G, WANG S L. Celestial navigation in polar regions[J]. Journal of Dalian Maritime College, 1989, 15(3): 43–48 (in Chinese).
    [21] 郭德印, 曲绍斌, 姜璐. 在高纬度地区确定船位的实用方法[J]. 航海技术, 1999(4): 16–19.

    GUO D Y, QU S B, JIANG L. Practical navigation methods in region of high latitudes[J]. Marine Technology, 1999(4): 16–19 (in Chinese).
    [22] 唐正平, 王条, 甘忠林. 舰船在北极海区有关航法及定位问题探究[J]. 航海技术, 2012(1): 7–10. doi: 10.3969/j.issn.1006-1738.2012.01.002

    TANG Z P, WANG T, GAN Z L. Research on ship sailing and fixing in the arctic sea area[J]. Marine Technology, 2012(1): 7–10 (in Chinese). doi: 10.3969/j.issn.1006-1738.2012.01.002
    [23] 芮震峰, 应荣熔. 北冰洋航行应用天文导航的问题及对策[J]. 舰船科学技术, 2014, 36(2): 8–13. doi: 10.3404/j.issn.1672-7649.2014.02.002

    RUI Z F, YING R R. Problems and solutions of celestial navigation in the arctic ocean[J]. Ship Science and Technology, 2014, 36(2): 8–13 (in Chinese). doi: 10.3404/j.issn.1672-7649.2014.02.002
    [24] 尹力, 王宁, 殷敬伟, 等. 极地水声信号处理研究[J]. 中国科学院院刊, 2019, 34(3): 306–313.

    YIN L, WANG N, YIN J W, et al. Research on underwater signal processing in arctic region[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 306–313 (in Chinese).
    [25] ROTH E H, HILDEBRAND J A, WIGGINS S M, et al. Underwater ambient noise on the Chukchi Sea continental slope from 2006-2009[J]. The Journal of the Acoustical Society of America, 2012, 131(1): 104–110. doi: 10.1121/1.3664096
    [26] 彭富清, 霍立业. 海洋地球物理导航[J]. 地球物理学进展, 2007, 22(3): 759–764. doi: 10.3969/j.issn.1004-2903.2007.03.015

    PENG F Q, HUO L Y. Marine geophysical navigation[J]. Progress in Geophysics, 2007, 22(3): 759–764 (in Chinese). doi: 10.3969/j.issn.1004-2903.2007.03.015
    [27] 周红进, 兰国辉, 黄谦, 等. 北极地区磁罗经适用能力[J]. 中国航海, 2020, 43(2): 64–68. doi: 10.3969/j.issn.1000-4653.2020.02.013

    ZHOU H J, LAN G H, HUANG Q, et al. Performance of magnetic compass in arctic region[J]. Navigation of China, 2020, 43(2): 64–68 (in Chinese). doi: 10.3969/j.issn.1000-4653.2020.02.013
    [28] WITZE A. Earth's magnetic field is acting up and geologists don't know why[J]. Nature, 2019, 565(7738): 143–144. doi: 10.1038/d41586-019-00007-1
    [29] BEKIR E. Introduction to Modern Navigation Systems[M]. Hackensack: World Scientific, 2007.
    [30] 秦永元. 惯性导航[M]. 北京: 科学出版社, 2014.

    QIN Y Y. Inertial Navigation[M]. Beijing: Science Press, 2014 (in Chinese).
    [31] MYRON K, FRIED W R. Avionics Navigation Systems[M]. New York: Wiley, 1969.
    [32] TAL A, KLEIN I, KATZ R. Inertial navigation System/Doppler velocity log (INS/DVL) fusion with partial DVL measurements[J]. Sensors, 2017, 17(2): 415. doi: 10.3390/s17020415
    [33] LIU Y H, FAN X Q, LV C, et al. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles[J]. Mechanical Systems and Signal Processing, 2017, 100: 605–616.
    [34] IGNAGNI M B. An All-Earth inertial navigation scheme[J]. Navigation, 1972, 19(3): 209–214. doi: 10.1002/j.2161-4296.1972.tb01686.x
    [35] 周琪, 秦永元, 付强文, 等. 极区飞行格网惯性导航算法原理[J]. 西北工业大学学报, 2013, 31(2): 210–217. doi: 10.3969/j.issn.1000-2758.2013.02.010

    ZHOU Q, QIN Y Y, FU Q W, et al. Grid mechanization in inertial navigation systems for transpolar aircraft[J]. Journal of Northwestern Polytechnical University, 2013, 31(2): 210–217 (in Chinese). doi: 10.3969/j.issn.1000-2758.2013.02.010
    [36] 杨槊, 李群, 姜述明, 等. 极区格网阻尼导航方法[J]. 导航定位与授时, 2016, 3(5): 27–32.

    YANG S, LI Q, JIANG S M, et al. A damping method for polar navigation based on grid mechanization[J]. Navigation Positioning and Timing, 2016, 3(5): 27–32 (in Chinese).
    [37] 赵琳, 康瑛瑶, 程建华, 等. 一种极区无经度更新的格网惯性导航方法: 中国, 201910444999.1[P]. 2019-09-03.
    [38] 李倩, 孙枫, 奔粤阳, 等. 基于横坐标系的捷联惯导系统极区导航方法[J]. 中国惯性技术学报, 2014, 22(3): 288–295.

    LI Q, SUN F, BEN Y Y, et al. Polar navigation of strapdown inertial navigation system based on transversal frame in polar region[J]. Journal of Chinese Inertial Technology, 2014, 22(3): 288–295 (in Chinese).
    [39] LI Q, BEN Y Y, YU F, et al. Transversal strapdown INS based on reference ellipsoid for vehicle in the polar region[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7791–7795. doi: 10.1109/TVT.2015.2497713
    [40] 王海波, 张汉武, 张萍萍, 等. 基于横向地球坐标的惯性导航方法[J]. 中国惯性技术学报, 2016, 24(6): 716–722.

    WANG H B, ZHANG H W, ZHANG P P, et al. Inertial navigation algorithm for polar region based on transverse terrestrial coordinate[J]. Journal of Chinese Inertial Technology, 2016, 24(6): 716–722 (in Chinese).
    [41] YAO Y Q, XU X S, LI Y, et al. Transverse navigation under the ellipsoidal earth model and its performance in both polar and non-polar areas[J]. The Journal of Navigation, 2016, 69(2): 335–352. doi: 10.1017/S0373463315000715
    [42] 林秀秀, 卞鸿巍, 马恒, 等. 极区惯导编排中地球近似模型的适用性分析[J]. 测绘学报, 2019, 48(3): 303–312. doi: 10.11947/j.AGCS.2019.20180073

    LIN X X, BIAN H W, MA H, et al. Applicability analysis of the approximate model of the earth with the arrangement of INS in polar region[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3): 303–312 (in Chinese). doi: 10.11947/j.AGCS.2019.20180073
    [43] QIN F J, CHANG L B, TONG L, et al. Transverse polar navigation method based on virtual sphere model[J]. Journal of Chinese Inertial Technology, 2018, 26(5): 571–578.
    [44] 张广栋, 严恭敏, 翁浚, 等. 极区飞行法向量惯性导航算法原理[J]. 中国惯性技术学报, 2017, 25(5): 606–610, 617.

    ZHANG G D, YAN G M, WENG J, et al. N-vector inertial navigation mechanization algorithm for transpolar aircraft[J]. Journal of Chinese Inertial Technology, 2017, 25(5): 606–610, 617 (in Chinese).
    [45] 刘猛, 李光春, 高延滨, 等. 基于伪地球坐标系的惯导系统全球导航算法[J]. 中国惯性技术学报, 2017, 25(4): 442–448.

    LIU M, LI G C, GAO Y B, et al. Algorithm of global navigation for inertial navigation system based on pseudo-Earth frame[J]. Journal of Chinese Inertial Technology, 2017, 25(4): 442–448 (in Chinese).
    [46] 刘文超, 卞鸿巍, 王荣颖, 等. 基于极球面投影的惯导高纬导航方法[J]. 华中科技大学学报(自然科学版), 2014, 42(8): 27–32.

    LIU W C, BIAN H W, WANG R Y, et al. High latitude navigation method for inertial navigation system based on polar stereographic projection[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2014, 42(8): 27–32 (in Chinese).
    [47] 鄂栋臣, 姜卫平. 北极考察与GPS定位研究初探[J]. 极地研究, 2000, 12(1): 32–39.

    E D C, JIANG W P. Arctic expedition and a preliminary research of GPS positioning[J]. Chinese Journal of Polar Research, 2000, 12(1): 32–39 (in Chinese).
    [48] 于清德, 吴雨航, 陈秀万, 等. GNSS几何性能仿真分析[J]. 计算机仿真, 2010, 27(6): 87–92. doi: 10.3969/j.issn.1006-9348.2010.06.021

    YU Q D, WU Y H, CHEN X W, et al. Simulation analysis of GNSS geometric performance[J]. Computer Simulation, 2010, 27(6): 87–92 (in Chinese). doi: 10.3969/j.issn.1006-9348.2010.06.021
    [49] 刘志平, 唐旭, 张秋昭. GNSS卫星可见性及可用性的概率特征[J]. 测绘科学, 2015, 40(12): 101–107, 111.

    LIU Z P, TANG X, ZHANG Q Z. Probability statistics of GNSS satellites visibility and availability[J]. Science of Surveying and Mapping, 2015, 40(12): 101–107, 111 (in Chinese).
    [50] 焦博, 郝金明, 陈明剑, 等. BDS在南极地区的导航服务分析[J]. 导航定位学报, 2017, 5(4): 64–69.

    JIAO B, HAO J M, CHEN M J, et al. Performance analysis of BDS in Antarctica[J]. Journal of Navigation and Positioning, 2017, 5(4): 64–69 (in Chinese).
    [51] 徐炜, 贾雪, 乔方, 等. 北斗在南/北极地区的基本定位性能评估[J]. 大地测量与地球动力学, 2018, 38(12): 1268–1273.

    XU W, JIA X, QIAO F, et al. Preliminary assessment of positioning performance of BDS navigation system in north and south polar regions[J]. Journal of Geodesy and Geodynamics, 2018, 38(12): 1268–1273 (in Chinese).
    [52] 倪煜淮, 许杰, 邹永刚, 等. 北斗三号系统与GPS定位性能仿真对比分析[J]. 海洋测绘, 2019, 39(4): 71–74. doi: 10.3969/j.issn.1671-3044.2019.04.017

    NI Y H, XU J, ZOU Y G, et al. The positioning performance simulation analysis of BeiDou and GPS global navigation system[J]. Hydrographic Surveying and Charting, 2019, 39(4): 71–74 (in Chinese). doi: 10.3969/j.issn.1671-3044.2019.04.017
    [53] 陈闯, 潘雷, 宋芮德. GNSS在极区环境下的定位性能分析[J]. 弹箭与制导学报, 2019, 39(4): 15–18.

    CHEN C, PAN L, SONG R D. Positioning performance assessment of GNSS over polar environment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2019, 39(4): 15–18 (in Chinese).
    [54] 姚翔, 陈明剑, 李滢, 等. 极地BDS精密单点定位性能分析[J]. 导航定位学报, 2018, 6(4): 57–63.

    YAO X, CHEN M J, LI Y, et al. Performance analysis on polar BDS PPP[J]. Journal of Navigation and Positioning, 2018, 6(4): 57–63 (in Chinese).
    [55] 左宗, 陈明剑, 李滢, 等. 极区北斗卫星数据质量特征分析[J]. 测绘通报, 2018(6): 12–16, 67.

    ZUO Z, CHEN M J, LI Y, et al. Characteristics analysis of GNSS data quality in polar region[J]. Bulletin of Surveying and Mapping, 2018(6): 12–16, 67 (in Chinese).
    [56] 左宗, 陈明剑, 李滢, 等. 极地GNSS精密单点定位中的误差特性及应用研究[C]//第九届中国卫星导航学术年会论文集—S05精密定位技术. 哈尔滨: 中国卫星导航系统管理办公室学术交流中心, 2018: 145-149.

    ZUO Z, CHEN M J, LI Y, et al. The error characteristics and application of GNSS precise point positioning in the polar regions[C]//Proceedings of the 9th China Satellite Navigation Conference. Harbin: Academic Exchange Center of China Satellite Navigation System Administration Office, 2018: 145-149 (in Chinese).
    [57] SADLER D H. Tables for astronomical polar navigation[J]. The Journal of Navigation, 1949, 2(1): 9–24. doi: 10.1017/S0373463300031507
    [58] ZACCHEO F E. Notes on Astro-Navigation in polar regions[J]. The Journal of Navigation, 1949, 2(2): 180–183. doi: 10.1017/S0373463300031805
    [59] COLLINS O C. Astro ranges in arctica[J]. The Journal of Navigation, 1952, 5(2): 131–138. doi: 10.1017/S0373463300044532
    [60] 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1–15.

    FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection, 2018, 1(1): 1–15 (in Chinese).
    [61] 李启虎, 王宁, 赵进平, 等. 北极水声学: 一门引人关注的新型学科[J]. 应用声学, 2014, 33(6): 471–483.

    LI Q H, WANG N, ZHAO J P, et al. Arctic underwater acoustics: an attractive new topic in ocean acoustics[J]. Applied Acoustics, 2014, 33(6): 471–483 (in Chinese).
    [62] 李启虎, 黄海宁, 尹力, 等. 北极水声学研究的新进展和新动向[J]. 声学学报, 2018, 43(4): 420–431.

    LI Q H, HUANG H N, YIN L, et al. Progresses and advances in arctic underwater acoustic study[J]. Acta Acustica, 2018, 43(4): 420–431 (in Chinese).
    [63] 刘崇磊, 李涛, 尹力, 等. 北极冰下双轴声道传播特性研究[J]. 应用声学, 2016, 35(4): 309–315.

    LIU C L, LI T, YIN L, et al. Acoustic propagation properties of two-axes channel under sea ice in the Arctic[J]. Applied Acoustics, 2016, 35(4): 309–315 (in Chinese).
    [64] 黄海宁, 刘崇磊, 李启虎, 等. 典型北极冰下声信道多途结构分析及实验研究[J]. 声学学报, 2018, 43(3): 273–282.

    HUANG H N, LIU C L, LI Q H, et al. Multipath structure of the typical under-ice sound channel in Arctic: theory and experiment[J]. Acta Acustica, 2018, 43(3): 273–282 (in Chinese).
    [65] 朱广平, 殷敬伟, 陈文剑, 等. 北极典型冰下声信道建模及特性[J]. 声学学报, 2017, 42(2): 152–158.

    ZHU G P, YIN J W, CHEN W J, et al. Modeling and characterizing the typical under-ice acoustic channel for the Arctic[J]. Acta Acustica, 2017, 42(2): 152–158 (in Chinese).
    [66] 卞鸿巍, 刘文超, 温朝江, 等. 极区导航[M]. 北京: 科学出版社, 2020.

    BIAN H W, LIU W C, WEN C J, et al. Polar Navigation[M]. Beijing: Science Press, 2020 (in Chinese).
    [67] 李树军, 张哲, 李惠雯, 等. 编制北极地区航海图有关问题的探讨[J]. 海洋测绘, 2012, 32(1): 58–60. doi: 10.3969/j.issn.1671-3044.2012.01.018

    LI S J, ZHANG Z, LI H W, et al. Research on compilation of nautical charts of arctic regions[J]. Hydrographic Surveying and Charting, 2012, 32(1): 58–60 (in Chinese). doi: 10.3969/j.issn.1671-3044.2012.01.018
    [68] SKOPELITI A, TSOULOS L. Choosing a suitable projection for navigation in the arctic[J]. Marine Geodesy, 2013, 36(2): 234–259. doi: 10.1080/01490419.2013.781087
    [69] 李厚朴, 边少锋, 刘强, 等. 常用极区海图投影直接变换的闭合公式[J]. 海洋测绘, 2017, 37(2): 32–34, 38. doi: 10.3969/j.issn.1671-3044.2017.02.008

    LI H P, BIAN S F, LIU Q, et al. Closed formulae of direct transformations between commonly used polar chart projections[J]. Hydrographic Surveying and Charting, 2017, 37(2): 32–34, 38 (in Chinese). doi: 10.3969/j.issn.1671-3044.2017.02.008
    [70] NAUMANN J. Grid navigation with polar stereographic charts[J]. European Journal of Navigation, 2011, 9(1): 4–8.
    [71] 温朝江, 卞鸿巍, 王荣颖, 等. 极区极球面投影的可用性及误差分析[J]. 海军工程大学学报, 2014, 26(3): 42–47.

    WEN C J, BIAN H W, WANG R Y, et al. Availability and error analysis of polar stereographic projection in polar navigation[J]. Journal of Naval University of Engineering, 2014, 26(3): 42–47 (in Chinese).
    [72] 温朝江, 卞鸿巍, 王荣颖, 等. 极区极球面投影海图的分幅设计算法[J]. 测绘科学技术学报, 2014, 31(3): 320–325. doi: 10.3969/j.issn.1673-6338.2014.03.021

    WEN C J, BIAN H W, WANG R Y, et al. The subdivision algorithm of polar stereographic charts in polar regions[J]. Journal of Geomatics Science and Technology, 2014, 31(3): 320–325 (in Chinese). doi: 10.3969/j.issn.1673-6338.2014.03.021
    [73] 温朝江, 卞鸿巍, 陈秋, 等. 双重极球面投影的极区投影误差分析[J]. 海洋测绘, 2015, 35(1): 34–37. doi: 10.3969/j.issn.1671-3044.2015.01.009

    WEN C J, BIAN H W, CHEN Q, et al. Error analysis of double polar stereographic projection in polar regions[J]. Hydrographic Surveying and Charting, 2015, 35(1): 34–37 (in Chinese). doi: 10.3969/j.issn.1671-3044.2015.01.009
    [74] 王海波, 张汉武, 张萍萍, 等. 基于极球面投影的极区格网坐标表示方法[J]. 指挥控制与仿真, 2016, 38(2): 106–109. doi: 10.3969/j.issn.1673-3819.2016.02.022

    WANG H B, ZHANG H W, ZHANG P P, et al. Polar navigation method based on polar stereographic projection[J]. Command Control & Simulation, 2016, 38(2): 106–109 (in Chinese). doi: 10.3969/j.issn.1673-3819.2016.02.022
    [75] 温朝江, 卞鸿巍, 边少锋, 等. 基于等距圆的极球面投影距离量测方法[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1504–1508, 1513.

    WEN C J, BIAN H W, BIAN S F, et al. A distance measuring method on polar stereographic charts based on equidistant circles[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1504–1508, 1513 (in Chinese).
    [76] 赵巍, 温朝江, 王国举. 等距圆量距法在海图上的扩展应用研究[J]. 海洋测绘, 2018, 38(1): 63–66. doi: 10.3969/j.issn.1671-3044.2018.01.016

    ZHAO W, WEN C J, WANG G J. The extended application of distance-measuring method based on stereographic charts[J]. Hydrographic Surveying and Charting, 2018, 38(1): 63–66 (in Chinese). doi: 10.3969/j.issn.1671-3044.2018.01.016
    [77] 刘文超, 卞鸿巍. 基于极球面投影的极区格网等角航线[J]. 测绘学报, 2019, 48(1): 18–23. doi: 10.11947/j.AGCS.2019.20180134

    LIU W C, BIAN H W. Polar grid rumble route based on polar stereographic projection[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 18–23 (in Chinese). doi: 10.11947/j.AGCS.2019.20180134
    [78] PETER O. The Mercator Projections[M]. Edinburgh: Edinburgh University Press, 2008: 23-29.
    [79] GDOWSKI B. The transverse Mercator projection of the entire spheroid[J]. Survey Review, 1966, 18(141): 339–341. doi: 10.1179/sre.1966.18.141.339
    [80] KARNEY C F F. Transverse Mercator with an accuracy of a few nanometers[J]. Journal of Geodesy, 2011, 85(8): 475–485. doi: 10.1007/s00190-011-0445-3
    [81] 李忠美, 李厚朴, 边少锋. 极区横墨卡托投影非奇异公式及投影变形分析[C]//义乌第二十四届海洋测绘综合性学术研讨会论文集. 2012: 189-195.

    LI Z M, LI H P, BIAN S F. The non-singular formula of polar transverse Mercator projection and analysis of projection distortion[C]//Yiwu, Proceedings of the 24th Comprehensive Symposium on Marine Surveying and Mapping, 2012: 189-195 (in Chinese).
    [82] LEE L P. The nomenclature and classification of map projections[J]. Empire Survey Review, 1944, 7(51): 190–200. doi: 10.1179/sre.1944.7.51.190
    [83] REILLY W I. A conformal mapping projection with minimum scale error[J]. Survey Review, 1973, 22(168): 57–71. doi: 10.1179/sre.1973.22.168.57
    [84] 李忠美, 于金星, 李厚朴, 等. 高斯投影与横墨卡托投影等价性证明[J]. 海洋测绘, 2013, 33(3): 17–20. doi: 10.3969/j.issn.1671-3044.2013.03.004

    LI Z M, YU J X, LI H P, et al. The verification of equivalence between gauss and transverse Mercator projections[J]. Hydrographic Surveying and Charting, 2013, 33(3): 17–20 (in Chinese). doi: 10.3969/j.issn.1671-3044.2013.03.004
    [85] 王海波, 张汉武, 张萍萍, 等. 一种适用于极区的横轴墨卡托海图[J]. 极地研究, 2017, 29(4): 454–460.

    WANG H B, ZHANG H W, ZHANG P P, et al. A transverse Mercator chart suitable for polar regions[J]. Chinese Journal of Polar Research, 2017, 29(4): 454–460 (in Chinese).
    [86] 王海波, 张汉武, 郝勇帅. 横轴墨卡托海图的船舶极区航行方法[J]. 测绘科学, 2018, 43(5): 152–157.

    WANG H B, ZHANG H W, HAO Y S. Exploration to a sailing for ships in polar regions based on transverse Mercator chart[J]. Science of Surveying and Mapping, 2018, 43(5): 152–157 (in Chinese).
    [87] 刘文超, 温朝江, 卞鸿巍, 等. 利用双重投影改进横墨卡托投影极区应用方法[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1138–1143.

    LIU W C, WEN C J, BIAN H W, et al. An improved method of polar ellipsoid transverse Mercator projection based on double projection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1138–1143 (in Chinese).
    [88] 华棠. 大、中比例尺日晷投影图球半径的选择[J]. 测绘学报, 1984, 13(2): 141–151. doi: 10.3321/j.issn:1001-1595.1984.02.008

    HUA T. The selection of spherical radius for gnomonic projection on largeand medium scale[J]. Acta Geodaetica et Cartographica Sinica, 1984, 13(2): 141–151 (in Chinese). doi: 10.3321/j.issn:1001-1595.1984.02.008
    [89] 杨启和. 球心投影的线性变换及其性质和应用的研究[J]. 测绘学报, 1990, 19(2): 102–109. doi: 10.3321/j.issn:1001-1595.1990.02.004

    YANG Q H. A research of linear transformation on the gnomonic projection and its characteristics and application[J]. Acta Geodaetica et Cartographica Sinica, 1990, 19(2): 102–109 (in Chinese). doi: 10.3321/j.issn:1001-1595.1990.02.004
    [90] 丁佳波. 采用双重投影法的椭球面日晷投影[J]. 武汉测绘科技大学学报, 2000, 25(2): 183–185. doi: 10.3969/j.issn.1671-8860.2000.02.019

    DING J B. Ellipsoidal gnomonic projection by double projection method[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(2): 183–185 (in Chinese). doi: 10.3969/j.issn.1671-8860.2000.02.019
    [91] 张晓平, 边少锋, 李忠美. 极区高斯投影与日晷投影的比较[J]. 武汉大学学报·信息科学版, 2015, 40(5): 667–672.

    ZHANG X P, BIAN S F, LI Z M. Comparisons between gauss and gnomonic projections in polar regions[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 667–672 (in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  40
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-10-14
  • 网络出版日期:  2021-07-09

目录

    /

    返回文章
    返回