Prediction and reduction of out-of-plane welding distortion of typical block in fabrication of semi-submersible lifting and disassembly platform
-
摘要:
目的 半潜式起重拆解平台的分段焊接变形直接影响着整个平台的尺寸精度和建造周期。 方法 为此,以典型的B514分段为研究对象,首先预测其焊接面外变形的趋势及数值,分析反变形施加以及焊接顺序优化的影响,提升分段结构的建造精度;然后,依据焊接规范梳理平台结构的主要接头类型及焊接工艺,并通过高效的热−弹−塑性有限元分析,研究典型接头的热−力学响应,获得对应的焊接固有变形;最后,将焊接固有变形作为力学载荷,通过弹性有限元计算,预测B514分段的整体建造精度,同时研究施加反变形和不同焊接顺序对分段建造精度的影响。 结果 基于固有变形的弹性有限元分析,所预测的面外变形与实际测量结果基本吻合,给出了面外变形的产生机理。 结论 通过高效的有限元分析,可以获得并构建焊接固有变形数据库,从而用于复杂分段结构的焊接变形预测,并且施加反变形和焊接顺序优化能有效降低焊接面外变形。 Abstract:Objectives The welding distortion of block structures in the fabrication of semi-submersible lifting and disassembly platforms influences their dimensional accuracy and production schedule. Methods Thus, taking a B514 block as the research object, the tendency and magnitude of its out-of-plane welding distortion are predicted in advance, and the influence of inverse deformation and welding sequence are examined for fabrication accuracy enhancement. Next, typical welded joints and their welding conditions are summarized, and effective thermal-elastic-plastic finite element (FE) computation is carried out to examine the thermal-mechanical response and evaluate the inherent welding deformation. With inherent deformation as mechanical loading, elastic FE analysis is then employed to predict the dimensional accuracy of the B514 block. Moreover, the influences of inverse deformation application and different welding sequences on dimensional accuracy are also examined. Results Based on elastic FE analysis with inherent deformation, the computed out-of-plane welding distortion is found to be in good agreement with the measurement, and its generation mechanism is also clarified. Conclusions Effective FE analysis can be employed to predict the inherent deformation and distortion of complex welded structures; moreover, inverse deformation application and an optimized welding sequence can significantly reduce welding distortion. -
表 1 B514分段典型的角接接头
Table 1. Typical fillet welding joints of B514 section
接头编号 腹板 底板 坡口形式 焊接工艺
规范编号厚度/mm 材料 厚度/mm 材料 T1 15 AH36 10 AH36 V WPS1 T2 15 AH36 15 AH36 V T3 15 AH36 20 AH36 V T4 10 AH36 10 AH36 V T5 20 AH36 15 AH36 K WPS2 T6 25 AH36 10 AH36 K T7 15 EQ51 15 EQ51 V WPS3 T8 15 EQ51 20 EQ51 V T9 15 EQ51 30 EQ51 V T10 20 EQ51 20 EQ51 K WPS4 T11 20 EQ51 30 EQ51 K 表 2 B514分段典型的对接接头
Table 2. Typical butt welding joints of B514 section
接头编号 左 右 坡口形式 焊接工艺
规范编号厚度/mm 材料 厚度/mm 材料 B1 10 AH36 10 AH36 I型 WPS5 B2 15 AH36 15 AH36 I型 WPS6 B3 15 AH36 25 AH36 I型 B4 20 AH36 20 AH36 I型 B5 15 AH36 15 EQ51 I型 WPS7 B6 20 AH36 20 EQ51 I型 B7 20 AH36 30 EQ51 I型 B8 15 EQ51 15 EQ51 I型 WPS8 B9 15 EQ51 20 EQ51 I型 B10 20 EQ51 30 EQ51 I型 表 3 典型角接接头的焊接工艺(FCAW)
Table 3. Welding condition of typical fillet welding with FCAW
焊接工艺
规范编号电流/A 电压/V 速度
/(cm·min−1)最大热输入量
/(kJ·mm−1)WPS1 171~220 22.9~28.2 15.4~33.5 1.94 WPS2 171~220 22.9~26.4 9.5~29 1.59 WPS3 165~220 23.5~27.5 8.0~13.0 2.87 WPS4 128~165 22.6~26.2 5.8~12.5 2.85 表 4 I型坡口的对接接头焊接工艺(SAW)
Table 4. Welding condition of butt welding joints of I-type groove with SAW
焊接工艺
规范编号电流/A 电压/V 速度
/(mm·min−1)最大热输入量
/(kJ·mm−1)WPS5 460~580 28~34 470~630 1.82 WPS6 540~682 29.4~35.5 390~526 3.37 WPS7 540~735 31.5~37.5 465~690 2.34 WPS8 540~710 30~36 425~630 2.45 表 5 热输入与焊接接头固有变形间的经验公式
Table 5. Empirical formula between welding inherent deformation and heat input
变量 对接接头 角接接头 纵向收缩力 −4.74×1010+9.87×107×
焊接热输入4.47×1011+7.34×106×
焊接热输入横向收缩×板厚 6.97−1.09×10−4×
焊接热输入翼板:−1.18+3.54×10−4×
焊接热输入腹板:−22.15+4.92×10−3×
焊接热输入横向弯曲×板厚3 −122.91+3.22×10−2×
焊接热输入翼板:−109.03+2.16×10−2×
焊接热输入腹板:151.77+7.77×10−3×
焊接热输入 -
[1] 王江超, 周宏. 基于弹性有限元分析的船体结构焊接变形研究[J]. 中国造船, 2016, 57(3): 109–115. doi: 10.3969/j.issn.1000-4882.2016.03.013WANG J C, ZHOU H. Investigation of welding distortion of ship structure based on elastic FE analysis[J]. Shipbuilding of China, 2016, 57(3): 109–115 (in Chinese). doi: 10.3969/j.issn.1000-4882.2016.03.013 [2] 史雄华, 周宏, 王江超, 等. 20000 TEU集装箱船水密横舱壁结构精度建造的预控[J]. 船舶工程, 2019, 41(9): 111–117, 130.SHI X H, ZHOU H, WANG J C, et al. Prediction and controlling of accurate construction of 20000 TEU container ship watertight transverse bulkhead structure[J]. Ship Engineering, 2019, 41(9): 111–117, 130 (in Chinese). [3] 王江超, 史雄华, 周宏, 等. 集装箱船大厚板焊接接头面外变形控制分析[J]. 哈尔滨工程大学学报, 2019, 40(9): 1562–1568.WANG J C, SHI X H, ZHOU H, et al. Out-of-plane welding distortion control of thick plate butt-welded joint of a container ship[J]. Journal of Harbin Engineering University, 2019, 40(9): 1562–1568 (in Chinese). [4] 丁振斌, 朱元伟, 王波, 等. 大型复杂船体分段焊接变形研究[J]. 中国舰船研究, 2011, 6(3): 79–82. doi: 10.3969/j.issn.1673-3185.2011.03.017DING Z B, ZHU Y W, WANG B, et al. Welding deformation of large-complex ship subsection[J]. Chinese Journal of Ship Research, 2011, 6(3): 79–82 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.017 [5] 陈哲超, 陈震. 加筋板结构连续焊焊接变形规律[J]. 中国舰船研究, 2016, 11(3): 68–73, 88. doi: 10.3969/j.issn.1673-3185.2016.03.012CHEN Z C, CHEN Z. Deformation rules of stiffened plates with continuous welding[J]. Chinese Journal of Ship Research, 2016, 11(3): 68–73, 88 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.012 [6] 戈亮, 刘序辰. 基于热弹塑性计算分析的甲板分段建造反变形值设置方法[J]. 造船技术, 2018(6): 59–63. doi: 10.3969/j.issn.1000-3878.2018.06.014GE L, LIU X C. Anti-deformation value setting method for deck section construction based on thermal elastoplastic analysis[J]. Marine Technology, 2018(6): 59–63 (in Chinese). doi: 10.3969/j.issn.1000-3878.2018.06.014 [7] GANNON L, LIU Y, PEGG N, et al. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates[J]. Marine Structures, 2010, 23(3): 385–404. doi: 10.1016/j.marstruc.2010.05.002 [8] SHADKAM S, RANJBARNODEH E, IRANMANESH M. Effect of sequence and stiffener shape on welding distortion of stiffened panel[J]. Journal of Constructional Steel Research, 2018, 149: 41–52. doi: 10.1016/j.jcsr.2018.07.010 [9] CHEN Z, CHEN Z C, SHENOI R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure[J]. Ocean Engineering, 2015, 106: 271–280. doi: 10.1016/j.oceaneng.2015.07.013 [10] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 罗宇, 王江超, 译. 成都: 四川大学出版社, 2008.UEDA Y, MURAKAWA H, MA N X. Computational approach and program of welding distortion and residual stress[M]. LUO Y, WANG J C, trans. Chengdu: Sichuan University Press, 2008 (in Chinese). [11] 王江超, 周宏, 吴正峰, 等. 船舶和海洋结构物建造中的计算焊接力学进展[J]. 造船技术, 2018(3): 64–70. doi: 10.3969/j.issn.1000-3878.2018.03.013WANG J C, ZHOU H, WU Z F, et al. Progress of computational welding mechanics in fabrication of ships and marine structures[J]. Marine Technology, 2018(3): 64–70 (in Chinese). doi: 10.3969/j.issn.1000-3878.2018.03.013 [12] MURAKAWA H, DENG D, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1): 43–52. doi: 10.1016/j.commatsci.2011.06.040 [13] MURAKAWA H, DENG D, RASHED S, et al. Prediction of distortion produced on welded structures during assembly using inherent deformation and interface element[J]. Transactions of JWRI, 2009, 38(2): 63–69. [14] VERHAEGHE G. Predictive formulae for weld distortion–a critical review[M]. Cambridge: Abington Publishing, 1999. [15] WANG J C, ZHAO H Q, ZOU J S, et al. Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig[J]. Ocean Engineering, 2017, 130: 25–39. doi: 10.1016/j.oceaneng.2016.11.059 -