留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拆解平台分段的焊接面外变形预测与控制

王江超 张宏 杨润畴 刘建成 周宏

王江超, 张宏, 杨润畴, 等. 拆解平台分段的焊接面外变形预测与控制[J]. 中国舰船研究, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02041
引用本文: 王江超, 张宏, 杨润畴, 等. 拆解平台分段的焊接面外变形预测与控制[J]. 中国舰船研究, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02041
WANG J C, ZHANG H, YANG R C, et al. Prediction and reduction of out-of-plane welding distortion of typical block in fabrication of semi-submersible lifting and disassembly platform[J]. Chinese Journal of Ship Research, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02041
Citation: WANG J C, ZHANG H, YANG R C, et al. Prediction and reduction of out-of-plane welding distortion of typical block in fabrication of semi-submersible lifting and disassembly platform[J]. Chinese Journal of Ship Research, 2021, 16(6): 1–10 doi: 10.19693/j.issn.1673-3185.02041

拆解平台分段的焊接面外变形预测与控制

doi: 10.19693/j.issn.1673-3185.02041
基金项目: 工业和信息化部高技术船舶专项基金资助项目(614(2017))
详细信息
    作者简介:

    王江超,男,1983年生,博士,副教授。研究方向:船舶建造工艺力学研究。E-mail:WJccn@hust.edu.cn

    通信作者:

    王江超

  • 中图分类号: U671.8

Prediction and reduction of out-of-plane welding distortion of typical block in fabrication of semi-submersible lifting and disassembly platform

  • 摘要:   目的  半潜式起重拆解平台的分段焊接变形直接影响着整个平台的尺寸精度和建造周期。为此,  方法  以典型的B514分段为研究对象,首先预测其焊接面外变形的趋势及数值,分析反变形施加以及焊接顺序优化的影响,提升分段结构的建造精度;然后,依据焊接规范梳理平台结构的主要接头类型及焊接工艺,并通过高效的热−弹−塑性有限元分析,研究典型接头的热−力学响应,获得对应的焊接固有变形;最后,将焊接固有变形作为力学载荷,通过弹性有限元计算,预测B514分段的整体建造精度,同时研究施加反变形和不同焊接顺序对分段建造精度的影响。  结果  基于固有变形的弹性有限元分析,所预测的面外变形与实际测量结果基本吻合,给出了面外变形的产生机理。  结论  通过高效的有限元分析,可以获得并构建焊接固有变形数据库,从而用于复杂分段结构的焊接变形预测,并且施加反变形和焊接顺序优化能有效降低焊接面外变形。
  • 图  1  焊缝处固有变形的加载示意图

    Figure  1.  Schematic diagram of welding inherent deformation loading on welding line

    图  2  B514分段的结构尺寸

    Figure  2.  Dimensional detail of B514 section

    图  3  AH36和EQ51钢随温度变化的热物理性能参数

    Figure  3.  Thermophysical parameters of AH36 and EQ51 steels with temperature variation

    图  4  T6角接接头的实体单元模型

    Figure  4.  Solid element model of T6 fillet welding joints

    图  5  T6角接接头的熔池形状

    Figure  5.  Melting pool shape of T6 fillet welding joints

    图  6  T6角接接头的残余塑性应变分布云图

    Figure  6.  Distribution of residual plastic strain of T6 fillet welding joints

    图  7  B1对接接头的实体单元模型

    Figure  7.  Solid elements model of B1 butt welding joints

    图  8  B1对接接头的熔池形状

    Figure  8.  Melting pool shape of B1 butt welding joints

    图  9  B1对接接头的残余塑性应变分布云图

    Figure  9.  Distribution of residual plastic strain of B1 butt welding joints

    图  10  焊接热输入与焊接固有变形的线性拟合

    Figure  10.  Linear fitting of welding inherent deformation with heat input

    图  11  B514分段的壳单元模型及边界条件

    Figure  11.  Shell elements model and boundary condition of B514 section

    图  12  实际焊接顺序下B514分段的面外变形云图

    Figure  12.  Out-of-plane welding distortion of B514 section with actual welding sequence

    图  13  计算的焊接面外变形与测量数据对比

    Figure  13.  Comparison of computed out-of-plane welding distortion and measured data

    图  14  考虑反变形的T6角接接头有限元模型

    Figure  14.  Finite element model of T6 fillet welding joints with considering inverse deformation

    图  15  考虑反变形的T6角接接头计算结果

    Figure  15.  Computional results of T6 fillet welding joints with considering inverse deformation

    图  16  考虑反变形的焊接面外变形对比

    Figure  16.  Comparison of out-of-plane welding distortion with considering inverse deformation

    图  17  不同焊接顺序的底板面外变形对比

    Figure  17.  Comparison of out-of-plane welding distortion of skin plate with different welding sequence

    表  1  B514分段典型的角接接头

    Table  1.   Typical fillet welding joints of B514 section

    接头编号腹板底板坡口形式焊接工艺
    规范编号
    厚度/mm材料厚度/mm材料
    T1 15 AH36 10 AH36 V WPS1
    T2 15 AH36 15 AH36 V
    T3 15 AH36 20 AH36 V
    T4 10 AH36 10 AH36 V
    T5 20 AH36 15 AH36 K WPS2
    T6 25 AH36 10 AH36 K
    T7 15 EQ51 15 EQ51 V WPS3
    T8 15 EQ51 20 EQ51 V
    T9 15 EQ51 30 EQ51 V
    T10 20 EQ51 20 EQ51 K WPS4
    T11 20 EQ51 30 EQ51 K
    下载: 导出CSV

    表  2  B514分段典型的对接接头

    Table  2.   Typical butt welding joints of B514 section

    接头编号坡口形式焊接工艺
    规范编号
    厚度/mm材料厚度/mm材料
    B1 10 AH36 10 AH36 I型 WPS5
    B2 15 AH36 15 AH36 I型 WPS6
    B3 15 AH36 25 AH36 I型
    B4 20 AH36 20 AH36 I型
    B5 15 AH36 15 EQ51 I型 WPS7
    B6 20 AH36 20 EQ51 I型
    B7 20 AH36 30 EQ51 I型
    B8 15 EQ51 15 EQ51 I型 WPS8
    B9 15 EQ51 20 EQ51 I型
    B10 20 EQ51 30 EQ51 I型
    下载: 导出CSV

    表  3  典型角接接头的焊接工艺(FCAW)

    Table  3.   Welding condition of typical fillet welding with FCAW

    焊接工艺
    规范编号
    电流/A电压/V速度
    /(cm·min−1)
    最大热输入量
    /(kJ·mm−1)
    WPS1171~22022.9~28.215.4~33.51.94
    WPS2171~22022.9~26.49.5~291.59
    WPS3165~22023.5~27.58.0~13.02.87
    WPS4128~16522.6~26.25.8~12.52.85
    下载: 导出CSV

    表  4  I型坡口的对接接头焊接工艺(SAW)

    Table  4.   Welding condition of butt welding joints of I-type groove with SAW

    焊接工艺
    规范编号
    电流/A电压/V速度
    /(mm·min−1)
    最大热输入量
    /(kJ·mm−1)
    WPS5460~58028~34470~6301.82
    WPS6540~68229.4~35.5390~5263.37
    WPS7540~73531.5~37.5465~6902.34
    WPS8540~71030~36425~6302.45
    下载: 导出CSV

    表  5  热输入与焊接接头固有变形间的经验公式

    Table  5.   Empirical formula between welding inherent deformation and heat input

    变量对接接头角接接头
    纵向收缩力−4.74×1010+9.87×107×
    焊接热输入
    4.47×1011+7.34×106×
    焊接热输入
    横向收缩×板厚6.97−1.09×10−4×
    焊接热输入
    翼板:−1.18+3.54×10−4×
    焊接热输入
    腹板:−22.15+4.92×10−3×
    焊接热输入
    横向弯曲×板厚3−122.91+3.22×10−2×
    焊接热输入
    翼板:−109.03+2.16×10−2×
    焊接热输入
    腹板:151.77+7.77×10−3×
    焊接热输入
    下载: 导出CSV
  • [1] 王江超, 周宏. 基于弹性有限元分析的船体结构焊接变形研究[J]. 中国造船, 2016, 57(3): 109–115. doi: 10.3969/j.issn.1000-4882.2016.03.013

    WANG J C, ZHOU H. Investigation of welding distortion of ship structure based on elastic FE analysis[J]. Shipbuilding of China, 2016, 57(3): 109–115 (in Chinese). doi: 10.3969/j.issn.1000-4882.2016.03.013
    [2] 史雄华, 周宏, 王江超, 等. 20000 TEU集装箱船水密横舱壁结构精度建造的预控[J]. 船舶工程, 2019, 41(9): 111–117, 130.

    SHI X H, ZHOU H, WANG J C, et al. Prediction and controlling of accurate construction of 20000 TEU container ship watertight transverse bulkhead structure[J]. Ship Engineering, 2019, 41(9): 111–117, 130 (in Chinese).
    [3] 王江超, 史雄华, 周宏, 等. 集装箱船大厚板焊接接头面外变形控制分析[J]. 哈尔滨工程大学学报, 2019, 40(9): 1562–1568.

    WANG J C, SHI X H, ZHOU H, et al. Out-of-plane welding distortion control of thick plate butt-welded joint of a container ship[J]. Journal of Harbin Engineering University, 2019, 40(9): 1562–1568 (in Chinese).
    [4] 丁振斌, 朱元伟, 王波, 等. 大型复杂船体分段焊接变形研究[J]. 中国舰船研究, 2011, 6(3): 79–82. doi: 10.3969/j.issn.1673-3185.2011.03.017

    DING Z B, ZHU Y W, WANG B, et al. Welding deformation of large-complex ship subsection[J]. Chinese Journal of Ship Research, 2011, 6(3): 79–82 (in Chinese). doi: 10.3969/j.issn.1673-3185.2011.03.017
    [5] 陈哲超, 陈震. 加筋板结构连续焊焊接变形规律[J]. 中国舰船研究, 2016, 11(3): 68–73, 88. doi: 10.3969/j.issn.1673-3185.2016.03.012

    CHEN Z C, CHEN Z. Deformation rules of stiffened plates with continuous welding[J]. Chinese Journal of Ship Research, 2016, 11(3): 68–73, 88 (in Chinese). doi: 10.3969/j.issn.1673-3185.2016.03.012
    [6] 戈亮, 刘序辰. 基于热弹塑性计算分析的甲板分段建造反变形值设置方法[J]. 造船技术, 2018(6): 59–63. doi: 10.3969/j.issn.1000-3878.2018.06.014

    GE L, LIU X C. Anti-deformation value setting method for deck section construction based on thermal elastoplastic analysis[J]. Marine Technology, 2018(6): 59–63 (in Chinese). doi: 10.3969/j.issn.1000-3878.2018.06.014
    [7] GANNON L, LIU Y, PEGG N, et al. Effect of welding sequence on residual stress and distortion in flat-bar stiffened plates[J]. Marine Structures, 2010, 23(3): 385–404. doi: 10.1016/j.marstruc.2010.05.002
    [8] SHADKAM S, RANJBARNODEH E, IRANMANESH M. Effect of sequence and stiffener shape on welding distortion of stiffened panel[J]. Journal of Constructional Steel Research, 2018, 149: 41–52. doi: 10.1016/j.jcsr.2018.07.010
    [9] CHEN Z, CHEN Z C, SHENOI R A. Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure[J]. Ocean Engineering, 2015, 106: 271–280. doi: 10.1016/j.oceaneng.2015.07.013
    [10] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序[M]. 罗宇, 王江超, 译. 成都: 四川大学出版社, 2008.

    UEDA Y, MURAKAWA H, MA N X. Computational approach and program of welding distortion and residual stress[M]. LUO Y, WANG J C, trans. Chengdu: Sichuan University Press, 2008 (in Chinese).
    [11] 王江超, 周宏, 吴正峰, 等. 船舶和海洋结构物建造中的计算焊接力学进展[J]. 造船技术, 2018(3): 64–70. doi: 10.3969/j.issn.1000-3878.2018.03.013

    WANG J C, ZHOU H, WU Z F, et al. Progress of computational welding mechanics in fabrication of ships and marine structures[J]. Marine Technology, 2018(3): 64–70 (in Chinese). doi: 10.3969/j.issn.1000-3878.2018.03.013
    [12] MURAKAWA H, DENG D, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1): 43–52. doi: 10.1016/j.commatsci.2011.06.040
    [13] MURAKAWA H, DENG D, RASHED S, et al. Prediction of distortion produced on welded structures during assembly using inherent deformation and interface element[J]. Transactions of JWRI, 2009, 38(2): 63–69.
    [14] VERHAEGHE G. Predictive formulae for weld distortion–a critical review[M]. Cambridge: Abington Publishing, 1999.
    [15] WANG J C, ZHAO H Q, ZOU J S, et al. Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig[J]. Ocean Engineering, 2017, 130: 25–39. doi: 10.1016/j.oceaneng.2016.11.059
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  20
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-12-22
  • 网络出版日期:  2021-07-21

目录

    /

    返回文章
    返回