留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑多目标的舰载机保障人员配置优化

杨杰 余明晖 彭雅欣 苏厚胜

杨杰, 余明晖, 彭雅欣, 等. 考虑多目标的舰载机保障人员配置优化[J]. 中国舰船研究, 2021, 17(X): 1–11 doi: 10.19693/j.issn.1673-3185.02019
引用本文: 杨杰, 余明晖, 彭雅欣, 等. 考虑多目标的舰载机保障人员配置优化[J]. 中国舰船研究, 2021, 17(X): 1–11 doi: 10.19693/j.issn.1673-3185.02019
YANG J, YU M H, PENG Y X, et al. Multi-objective optimization of carrier-based aircraft support personnel configuration[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–11 doi: 10.19693/j.issn.1673-3185.02019
Citation: YANG J, YU M H, PENG Y X, et al. Multi-objective optimization of carrier-based aircraft support personnel configuration[J]. Chinese Journal of Ship Research, 2021, 17(X): 1–11 doi: 10.19693/j.issn.1673-3185.02019

考虑多目标的舰载机保障人员配置优化

doi: 10.19693/j.issn.1673-3185.02019
基金项目: 国家自然科学基金资助项目(61403255);国防基础科研计划资助项目(JCKY2017207B005)
详细信息
    作者简介:

    杨杰,男,1995年生,硕士。研究方向:舰载机调度。Email:hustyangjie@hust.edu.cn

    余明晖,男,1971年生,博士,副教授。研究方向:决策支持系统,系统优化。E-mail:yumh@hust.edu.cn

    苏厚胜,男,1979年生,博士,教授。研究方向:多智能体,复杂网络。E-mail:houshengsu@gmail.com

    通信作者:

    余明晖

  • 中图分类号: U674.771

Multi-objective optimization of carrier-based aircraft support personnel configuration

  • 摘要:   目的  舰载机保障作业是舰载机出动回收流程中最为关键的环节,通过保障人员的合理配置,能够提高舰载机机群的保障能力和出动架次率,提高航母的综合作战能力。  方法  针对舰载机保障作业的人员配置问题,结合实际复杂的作战环境,基于舰载机机群保障完成时间、保障人员负载均衡性和累计转移时间,建立多目标的保障人员数量和技能配置的数学模型,并设计整数编码方式和基于事件调度策略的解码方法,提出一种基于改进的NSGA2的人员优化配置算法进行求解。  结果  实验仿真结果显示,该算法能够对所建立的数学模型进行有效求解,仿真结果满足实际作战需求。  结论  采用改进的NSGA2算法,结合舰载机保障流程、人员数量和技能配置问题,能够给出多目标优化后的舰载机保障方案。
  • 图  1  大机组保障模式示意图

    Figure  1.  Schematic diagram of large unit support mode

    图  2  染色体编码方式

    Figure  2.  Chromosome coding

    图  3  解码算法流程图

    Figure  3.  Flow chart of decoding algorithm

    图  4  基于改进的NSGA2的人员优化配置算法流程图

    Figure  4.  Flow chart of personnel optimization algorithm based on improved NSGA2

    图  5  舰载机作业集串/并行约束

    Figure  5.  Serial and parallel constraint of carrier-based aircraft operation set

    图  6  优化目标在种群进化过程中的变化趋势

    Figure  6.  The changing trend of optimization goals in the process of population evolution

    图  7  Pareto最优集

    Figure  7.  Pareto optimal solution set

    图  8  舰载机作保障方案甘特图

    Figure  8.  Carrier-based aircraft as support operation plan Gantt chart

    图  9  舰载机作业保障人员数量配置

    Figure  9.  The allocation of the number of support personnel for carrier-based aircraft

    表  1  保障作业标准时间及人员需求

    Table  1.   Guarantee operation standard time and personnel demand

    作业编号保障用时/s所需人员数量
    1601
    2601
    31201
    48002
    53001
    68002
    71 2002
    81 4002
    99002
    103001
    111201
    下载: 导出CSV
  • [1] 韩维, 王庆官. 航母与舰载机概论[M]. 烟台: 海军航空工程学院出版社, 2009: 37-41.

    HAN W, WANG Q G. Conspectus of aircraft carrier and carrier plane[M]. Yantai: Naval Aeronautical and Astronautical University Press, 2009: 37-41 (in Chinese).
    [2] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5): 221675.

    QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 221675 (in Chinese).
    [3] RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling[C]//Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011.
    [4] MICHINI B, HOW J P. A human-interactive course of action planner for aircraft carrier deck operations[C]// Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011.
    [5] RYAN J C, BANERJEE A G, CUMMINGS M L, et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 761–773. doi: 10.1109/TCYB.2013.2271694
    [6] 魏昌全, 陈春良, 王保乳. 基于出动方式的舰载机航空保障调度模型[J]. 海军航空工程学院学报, 2012, 27(1): 111–114. doi: 10.3969/j.issn.1673-1522.2012.01.025

    WEI C Q, CHEN C L, WANG B R. Research on the aircraft support scheduling model of carrier-based aircraft based on launch mode[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(1): 111–114 (in Chinese). doi: 10.3969/j.issn.1673-1522.2012.01.025
    [7] 韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37(4): 809–816. doi: 10.3969/j.issn.1001-506X.2015.04.14

    HAN W, SU X C, CHEN J F. Integrated maintenance support scheduling method of multi-carrier aircrafts[J]. Systems Engineering and Electronics, 2015, 37(4): 809–816 (in Chinese). doi: 10.3969/j.issn.1001-506X.2015.04.14
    [8] 孙长友. 舰载机保障作业调度计划优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.

    SUN C Y. Research on the optimization of carrier-based aircraft security operation scheduling[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
    [9] 苏析超, 韩维, 史玮韦. 舰载机多机一体化机务保障调度研究[J]. 火力与指挥控制, 2015, 40(6): 26–30, 35. doi: 10.3969/j.issn.1002-0640.2015.06.007

    SU X C, HAN W, SHI W W. Research on integrated maintenance scheduling of multi-carrier aircrafts[J]. Fire Control & Command Control, 2015, 40(6): 26–30, 35 (in Chinese). doi: 10.3969/j.issn.1002-0640.2015.06.007
    [10] 蒋婷婷, 韩维, 苏析超. 基于改进DE算法的舰载机保障调度优化[J]. 计算机仿真, 2018, 35(10): 51–56. doi: 10.3969/j.issn.1006-9348.2018.10.010

    JIANG T T, HAN W, SU X C. Optimization of carrier aircraft support scheduling based on improved DE algorithm[J]. Computer Simulation, 2018, 35(10): 51–56 (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.10.010
    [11] 王强, 程云松. 世纪巨舰"尼米兹"[J]. 当代海军, 1996(6): 23–24.

    WANG Q, CHENG Y S. "Nimitz", the great ship of the century[J]. Modern Navy, 1996(6): 23–24 (in Chinese).
    [12] 刘相春. 美国"福特"级航母"一站式保障"技术特征和关键技术分析[J]. 中国舰船研究, 2013, 8(6): 1–5.

    LIU X C. Technical features and critical technologies for the "pit-stop" aircraft servicing adopted by ford class aircraft carriers[J]. Chinese Journal of Ship Research, 2013, 8(6): 1–5 (in Chinese).
    [13] 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 222314-1–222314-19.

    SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314-1–222314-19 (in Chinese).
    [14] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017
    [15] 冯强, 曾声奎, 康锐. 基于MAS的舰载机动态调度模型[J]. 航空学报, 2009, 30(11): 2119–2125. doi: 10.3321/j.issn:1000-6893.2009.11.017

    FENG Q, ZENG S K, KANG R. A MAS-based model for dynamic scheduling of carrier aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2119–2125 (in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.017
    [16] 张国辉, 胡一凡, 孙靖贺. 改进遗传算法求解多时间约束的柔性作业车间调度问题[J]. 工业工程, 2020, 23(2): 19–25, 48. doi: 10.3969/j.issn.1007-7375.2020.02.003

    ZHANG G H, HU Y F, SUN J H. An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J]. Industrial Engineering Journal, 2020, 23(2): 19–25, 48 (in Chinese). doi: 10.3969/j.issn.1007-7375.2020.02.003
    [17] GU J W, GU M Z, CAO C W, et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research, 2010, 37(5): 927–937.
    [18] 龙钰洋. 基于遗传算法的舰载机保障人员配置优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.

    LONG Y Y. Research on genetic algorithm of the security personnel allocation optimization[D]. Harbin: Harbin Engineering University, 2016 (in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2021-03-18
  • 网络出版日期:  2021-05-26

目录

    /

    返回文章
    返回