Multi-objective optimization of carrier-based aircraft support personnel configuration
-
摘要:
目的 舰载机保障作业是舰载机出动回收流程中最为关键的环节,通过合理配置保障人员,能够提高舰载机机群的保障能力和出动架次率,从而提高航母的综合作战能力。 方法 针对舰载机保障作业的人员配置问题,结合实际的复杂作战环境,基于舰载机机群保障完成时间、保障人员负载均衡性和累计转移时间,建立多目标的保障人员数量和技能配置的数学模型,并设计整数编码方式和基于事件调度策略的解码方法,提出一种基于改进的NSGA2的人员优化配置算法进行求解。 结果 仿真结果显示,该算法能够对所建立的数学模型进行有效求解,仿真结果满足实际作战需求。 结论 采用改进的NSGA2算法,结合舰载机保障流程、人员数量和技能配置问题,能够给出多目标优化后的舰载机保障方案。 Abstract:Objectives Flight-deck support operations are the most critical link in the process of launch and recovery of carrier-based aircraft.The reasonable allocation of support personnel can enable to improve the capability of supporting the aircraft fleet operation and the sortie generation rate, thereby enhancing the overall combat effectiveness of the carrier. Method Aiming at the personnel configuration problem of the carrier-based aircraft flight-deck operation support, considering the complex realistic environment and based on the makespan of the aircraft fleet operation support, load balance and cumulative transfer time of support personnel on flight deck, a multi-objective mathematical programming model is established to obtain the required numbers of support personnel and skill allocation scheme. An integer encoding method and decoding method based on the event-based scheduling policy are designed, and an improved NSGA2-based personnel optimization algorithm is proposed to solve the problem. Results The simulation results show that this algorithm can effectively solve the established mathematical model, and the simulation results meet the actual combat requirements. Conclusion The improved NSGA2 algorithm can combine the carrier-based aircraft support process, numbers of personnel and skill allocation to provide the carrier-based aircraft support operation with a multi-objective optimized scheduling plan. -
表 1 舰载机甲板保障作业标准时间及人员需求
Table 1. Standard time and personnel requirements of the carrier-based aircraft flight-deck support operation
作业编号 保障用时/s 所需人员数量 1 60 1 2 60 1 3 120 1 4 800 2 5 300 1 6 800 2 7 1 200 2 8 1 400 2 9 900 2 10 300 1 11 120 1 -
[1] 韩维, 王庆官. 航母与舰载机概论[M]. 烟台: 海军航空工程学院出版社, 2009: 37–41.HAN W, WANG Q G. Conspectus of aircraft carrier and carrier plane[M]. Yantai: Naval Aeronautical and Astronautical University Press, 2009: 37–41 (in Chinese). [2] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5): 221675.QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 221675 (in Chinese). [3] RYAN J C, CUMMINGS M L, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling[C]//Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011. [4] MICHINI B, HOW J P. A human-interactive course of action planner for aircraft carrier deck operations[C]// Proceedings of the Infotech@Aerospace 2011. St. Louis, Missouri: AIAA, 2011. [5] RYAN J C, BANERJEE A G, CUMMINGS M L, et al. Comparing the performance of expert user heuristics and an integer linear program in aircraft carrier deck operations[J]. IEEE Transactions on Cybernetics, 2014, 44(6): 761–773. doi: 10.1109/TCYB.2013.2271694 [6] 魏昌全, 陈春良, 王保乳. 基于出动方式的舰载机航空保障调度模型[J]. 海军航空工程学院学报, 2012, 27(1): 111–114. doi: 10.3969/j.issn.1673-1522.2012.01.025WEI C Q, CHEN C L, WANG B R. Research on the aircraft support scheduling model of carrier-based aircraft based on launch mode[J]. Journal of Naval Aeronautical and Astronautical University, 2012, 27(1): 111–114 (in Chinese). doi: 10.3969/j.issn.1673-1522.2012.01.025 [7] 韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37(4): 809–816. doi: 10.3969/j.issn.1001-506X.2015.04.14HAN W, SU X C, CHEN J F. Integrated maintenance support scheduling method of multi-carrier aircrafts[J]. Systems Engineering and Electronics, 2015, 37(4): 809–816 (in Chinese). doi: 10.3969/j.issn.1001-506X.2015.04.14 [8] 孙长友. 舰载机保障作业调度计划优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.SUN C Y. Research on the optimization of carrier-based aircraft security operation scheduling[D]. Harbin: Harbin Engineering University, 2016 (in Chinese). [9] 苏析超, 韩维, 史玮韦. 舰载机多机一体化机务保障调度研究[J]. 火力与指挥控制, 2015, 40(6): 26–30, 35. doi: 10.3969/j.issn.1002-0640.2015.06.007SU X C, HAN W, SHI W W. Research on integrated maintenance scheduling of multi-carrier aircrafts[J]. Fire Control & Command Control, 2015, 40(6): 26–30, 35 (in Chinese). doi: 10.3969/j.issn.1002-0640.2015.06.007 [10] 蒋婷婷, 韩维, 苏析超. 基于改进DE算法的舰载机保障调度优化[J]. 计算机仿真, 2018, 35(10): 51–56. doi: 10.3969/j.issn.1006-9348.2018.10.010JIANG T T, HAN W, SU X C. Optimization of carrier aircraft support scheduling based on improved DE algorithm[J]. Computer Simulation, 2018, 35(10): 51–56 (in Chinese). doi: 10.3969/j.issn.1006-9348.2018.10.010 [11] 王强, 程云松. 世纪巨舰"尼米兹"[J]. 当代海军, 1996(6): 23–24.WANG Q, CHENG Y S. "Nimitz", the great ship of the century[J]. Modern Navy, 1996(6): 23–24 (in Chinese). [12] 刘相春. 美国"福特"级航母"一站式保障"技术特征和关键技术分析[J]. 中国舰船研究, 2013, 8(6): 1–5.LIU X C. Technical features and critical technologies for the "pit-stop" aircraft servicing adopted by Ford class aircraft carriers[J]. Chinese Journal of Ship Research, 2013, 8(6): 1–5 (in Chinese). [13] 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 222314-1–222314-19.SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314-1–222314-19 (in Chinese). [14] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182–197. doi: 10.1109/4235.996017 [15] 冯强, 曾声奎, 康锐. 基于MAS的舰载机动态调度模型[J]. 航空学报, 2009, 30(11): 2119–2125. doi: 10.3321/j.issn:1000-6893.2009.11.017FENG Q, ZENG S K, KANG R. A MAS-based model for dynamic scheduling of carrier aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(11): 2119–2125 (in Chinese). doi: 10.3321/j.issn:1000-6893.2009.11.017 [16] 张国辉, 胡一凡, 孙靖贺. 改进遗传算法求解多时间约束的柔性作业车间调度问题[J]. 工业工程, 2020, 23(2): 19–25, 48. doi: 10.3969/j.issn.1007-7375.2020.02.003ZHANG G H, HU Y F, SUN J H. An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J]. Industrial Engineering Journal, 2020, 23(2): 19–25, 48 (in Chinese). doi: 10.3969/j.issn.1007-7375.2020.02.003 [17] GU J W, GU M Z, CAO C W, et al. A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem[J]. Computers & Operations Research, 2010, 37(5): 927–937. [18] 龙钰洋. 基于遗传算法的舰载机保障人员配置优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.LONG Y Y. Research on genetic algorithm of the security personnel allocation optimization[D]. Harbin: Harbin Engineering University, 2016 (in Chinese). -