留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气垫效应对三体船连接桥砰击载荷的影响

姜宜辰 孙振东 宗智 孙一方 金国庆

姜宜辰, 孙振东, 宗智, 等. 气垫效应对三体船连接桥砰击载荷的影响[J]. 中国舰船研究, 2021, 0(X): 1–10 doi: 10.19693/j.issn.1673-3185.01919
引用本文: 姜宜辰, 孙振东, 宗智, 等. 气垫效应对三体船连接桥砰击载荷的影响[J]. 中国舰船研究, 2021, 0(X): 1–10 doi: 10.19693/j.issn.1673-3185.01919
Jiang Y C, Sun Z D, Zong Z, et al. Effect of air cushion on slamming load of trimaran cross-deck structure[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–10 doi: 10.19693/j.issn.1673-3185.01919
Citation: Jiang Y C, Sun Z D, Zong Z, et al. Effect of air cushion on slamming load of trimaran cross-deck structure[J]. Chinese Journal of Ship Research, 2021, 0(X): 1–10 doi: 10.19693/j.issn.1673-3185.01919

气垫效应对三体船连接桥砰击载荷的影响

doi: 10.19693/j.issn.1673-3185.01919
基金项目: 青岛海洋科学与技术国家实验室开放基金资助项目(QNLM2016ORP0402);国家自然科学基金资助项目(51679037,51279030);国家自然科学基金资助重点项目(51639003);高技术船舶专项,973资助项目(2013CB036101)
详细信息
    作者简介:

    姜宜辰,男,1984年生,副教授

    孙振东,男,1994年生,硕士生,研究方向:船舶与海洋结构物设计制造。E-mail:18342236806@163.com

    宗智,男,1964年生,教授,博士生导师

    孙一方,男,1987年生,博士生。研究方向:船舶与海洋结构物设计制造。E-mail:sunyf4787@foxmail.com

    金国庆,男,1994年生,博士生。研究方向:船舶与海洋结构物设计制造。E-mail:jinguoqing2012@mail.dlut.edu.cn

    通信作者:

    宗智

  • 中图分类号: U661.3

Effect of air cushion on slamming load of trimaran cross-deck structure

  • 摘要:   目的  高海况下三体船连接桥底板易发生砰击现象,会在局部产生极大的砰击载荷从而造成结构破坏。为分析气垫效应对三体船连接桥砰击载荷的影响并提出连接桥底板的降载结构设计,开展相关研究。  方法  针对三体船入水砰击运动,使用计算流体力学方法对三体船分段入水过程中两相流问题进行模拟。首先,通过与模型试验中砰击载荷和下落加速度进行对比,验证了数值模型的可靠性;其次,分析空气垫效应对三体船连接桥砰击载荷的影响,通过限制流域尺寸以降低气体逃逸速度来强化气垫效应,证实了气垫的重要性;最后,研究了不同形状连接桥底部封板对降低砰击载荷的效果。  结果  结果表明:三体船入水会产生两次砰击峰值,分别为底部砰击峰值和连接桥砰击峰值。矩形间隔排列的封板相较于其他形状封板降载效果更加明显,降载幅度达到约20%。  结论  考虑气垫效应对砰击载荷预报有重要影响,在三体船连接桥的设计中,使用矩形间隔排列的封板可有效降低砰击载荷对船体结构的破坏。
  • 图  1  边界条件设置

    Figure  1.  Setup of boundary conditions

    图  2  不同时间步加速度时历曲线

    Figure  2.  The time histories of different time steps

    图  3  不同网格数时历曲线

    Figure  3.  The time histories obtained from different meshes

    图  4  横剖面实物图

    Figure  4.  Cross section of the physical model

    图  5  监测点分布

    Figure  5.  Arrangement of monitoring points

    图  6  1号监测点压力时历曲线

    Figure  6.  The time history of pressure at points 1

    图  7  2号监测点压力时历曲线

    Figure  7.  The time history of pressure at points 2

    图  8  3号监测点压力时历曲线

    Figure  8.  The time history of pressure at points 3

    图  9  加速度时历曲线

    Figure  9.  The accelerate time history of different conditions

    图  10  速度矢量图

    Figure  10.  Velocity vector diagram

    图  11  不同时刻自由液面图

    Figure  11.  Free surface at different times

    图  12  不同时刻气量云图

    Figure  12.  Air volume at different times

    图  13  1号监测点压力时历曲线

    Figure  13.  The time history of pressure at points 1

    图  14  2号监测点压力时历曲线

    Figure  14.  The time history of pressure at points 2

    图  15  3号监测点压力时历曲线

    Figure  15.  The time history of pressure at points 1

    图  16  加速度时历曲线

    Figure  16.  The accelerate time history of different conditions

    图  17  两种工况三维图

    Figure  17.  Three-dimensional diagram of two conditions

    图  18  气垫工况网格图

    Figure  18.  Grid diagram of air cushion condition

    图  19  3号监测点压力时历曲线

    Figure  19.  The time history of pressure at points 3

    图  20  加速度时历曲线

    Figure  20.  The accelerate time history of different conditions

    图  21  矩形封板结构

    Figure  21.  Rectangular bottom plate structure

    图  22  不同封板外型加速度时历曲线

    Figure  22.  The accelerate time history of different bottom plates

    图  23  不同封板外型下连接桥处砰击压力时历曲线

    Figure  23.  The pressure time history of different bottom plates

    图  24  两种工况加速度时历曲线

    Figure  24.  The accelerate time history of two conditions

    图  25  凹槽与凸台分布图

    Figure  25.  Distribution of grooves and lug boss

    图  26  封板凹槽点压力曲线

    Figure  26.  The time history of pressure at the groove point

    图  27  封板凸点压力时历曲线

    Figure  27.  The time history of pressure at the lug boss point

    表  1  不同封板外型下的计算结果

    Table  1.   The result of different bottom plates

    工况监测点砰击
    压力峰值/pa
    优化
    效率/%
    加速度
    峰值m/s2
    优化
    效率/%
    平板487.0935.24
    矩形441.03+8.2232.84+6.81
    矩形2483.05+0.8236.20−2.72
    梯形472.88+2.9136.15−2.58
    下载: 导出CSV
  • [1] REN H L, CHEN L L, FENG G Q, et al. Cross-deck slamming load calculation of trimaran based on modified plate slamming theory[J]. Applied Mechanics and Materials, 2013, 477-478: 325–329. doi: 10.4028/www.scientific.net/AMM.477-478.325
    [2] 骆寒冰, 徐慧, 余建星, 等. 舰船砰击载荷及结构动响应研究综述[J]. 船舶力学, 2010, 14(4): 439–450. doi: 10.3969/j.issn.1007-7294.2010.04.016

    LUO H B, XU H, YU J X, et al. Review of the state of the art of dynamic responses induced by slamming loads on ship structures[J]. Journal of Ship Mechanics, 2010, 14(4): 439–450 (in Chinese). doi: 10.3969/j.issn.1007-7294.2010.04.016
    [3] 刘明, 高东博, 左卫广. 海洋结构物砰击问题的研究与进展[J]. 华北水利水电大学学报(自然科学版), 2017, 38(5): 76–81.

    LIU M, GAO D B, ZUO W G. Research and development of the slamming problem of large-scale marine structures[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2017, 38(5): 76–81 (in Chinese).
    [4] VON KARMAN T. The impact on seaplane floats during landing[J]. National Advisory Committee for Aeronautics, Technical Memorandum, 1929(321): 2–8.
    [5] WAGNER H. Über Stoß- und Gleitvorgänge an der Oberfläche von Flüssigkeiten[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1932, 12(4): 193–215.
    [6] DOBROVOL’SKAYA Z N. On some problems of similarity flow of fluid with a free surface[J]. Journal of Fluid Mechanics, 1969, 36(4): 805–829. doi: 10.1017/S0022112069001996
    [7] MACKIE A G. The water entry problem[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1969, 22(1): 1–7. doi: 10.1093/qjmam/22.1.1
    [8] GREENHOW M. Wedge entry into initially calm water[J]. Applied Ocean Research, 1987, 9(4): 214–223. doi: 10.1016/0141-1187(87)90003-4
    [9] ARMAND J L, COINTE R. Hydrodynamic impact of a cylinder[C]//Proceedings on Offshore Mechanics and Arctic Engineering Symposium. Tkoyo, Japan: [s. n.], 1986, 1: 609-634.
    [10] 寇莹, 王宝寿, 陈玮琪. 二维物体入水砰击问题的理论方法研究[J]. 船舶力学, 2017, 21(4): 383–389. doi: 10.3969/j.issn.1007-7294.2017.04.001

    KOU Y, WANG B S, CHEN W Q. A study of theoretical method for two-dimensional water impact problems[J]. Journal of Ship Mechanics, 2017, 21(4): 383–389 (in Chinese). doi: 10.3969/j.issn.1007-7294.2017.04.001
    [11] 张岳青, 徐绯, 金思雅, 等. 楔形体入水冲击响应的试验研究及应用[J]. 机械强度, 2015, 37(2): 226–231.

    ZHANG Y Q, XU F, JIN S Y, et al. Experimental study and application on water impact response of wedge-shaped structure[J]. Journal of Mechanical Strength, 2015, 37(2): 226–231 (in Chinese).
    [12] 洪尧, 王本龙, 刘桦. 圆盘入水砰击载荷的实验研究[C]//第十届全国流体力学学术会议论文摘要集. 杭州, 2018.

    HONG Y, WANG B L, LIU Y. Experimental study on water entry impact loads of one cylindrical shell[C]//The 10th National Hydrodynamics Academic Conference. Hangzhou, Zhejiang, China, 2018 (in Chinese).
    [13] 盛森芝, 徐月亭, 袁辉靖. 近十年来流动测量技术的新发展[J]. 力学与实践, 2002, 24(5): 1–14. doi: 10.3969/j.issn.1000-0879.2002.05.001

    SHENG S Z, XU Y T, YUAN H J. New development in the technology of flow measurement over the last decade[J]. Mechanics in Engineering, 2002, 24(5): 1–14 (in Chinese). doi: 10.3969/j.issn.1000-0879.2002.05.001
    [14] 佘文轩, 周广利, 郭春雨, 等. 楔形体入水砰击问题研究与流场结构演变的POD分析[J]. 中国造船, 2019, 60(2): 36–49. doi: 10.3969/j.issn.1000-4882.2019.02.004

    SHE W X, ZHOU G L, GUO C Y, et al. Study of rigid wedge entering quiescent fluid and analysis of flow structure with POD[J]. Shipbuilding of China, 2019, 60(2): 36–49 (in Chinese). doi: 10.3969/j.issn.1000-4882.2019.02.004
    [15] 周广利, 佘文轩, 郭春雨, 等. 基于TR-PIV的刚性楔形体入水砰击载荷研究[J]. 华中科技大学学报(自然科学版), 2019, 47(3): 31–37.

    ZHOU G L, SHE W X, GUO C Y, et al. Experimental investigation of slamming load about rigid wedge entering water based on TR-PIV[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2019, 47(3): 31–37 (in Chinese).
    [16] 陈震, 肖熙. 平底结构砰击压力的分布[J]. 中国造船, 2005, 46(4): 97–103. doi: 10.3969/j.issn.1000-4882.2005.04.016

    CHEN Z, XIAO X. The distribution of slamming pressure on flat-bottom structure[J]. Shipbuilding of China, 2005, 46(4): 97–103 (in Chinese). doi: 10.3969/j.issn.1000-4882.2005.04.016
    [17] 何广华, 张子豪, 武雨嫣, 等. S-175船关键剖面的入水砰击模拟[J]. 哈尔滨工程大学学报, 2019, 40(6): 1058–1064.

    HE G H, ZHANG Z H, WU Y Y, et al. Simulation of the water-entry slamming of an S-175 containership at critical sections[J]. Journal of Harbin Engineering University, 2019, 40(6): 1058–1064 (in Chinese).
    [18] 王加夏, 陈月, 彭丹丹, 等. 砰击载荷下三维变形结构动态响应的数值模拟[J]. 舰船科学技术, 2019, 41(9): 8–14. doi: 10.3404/j.issn.1672-7649.2019.09.002

    WANG J X, CHEN Y, PENG D D, et al. Dynamic response of a 3D flexible structure due to the slamming impact loading[J]. Ship Science and Technology, 2019, 41(9): 8–14 (in Chinese). doi: 10.3404/j.issn.1672-7649.2019.09.002
    [19] 杨强, 林壮, 郭志群, 等. 穿浪双体船艏部分段模型入水砰击的数值仿真[J]. 华中科技大学学报(自然科学版), 2015, 43(6): 42–47.

    YANG Q, LIN Z, GUO Z Q, et al. Numerical simulation research on wet deck bow slam for large high speed catamarans[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2015, 43(6): 42–47 (in Chinese).
    [20] 曹正林, 吴卫国. 影响高速三体船连接桥砰击压力峰值因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2008, 32(1): 5–8.

    CAO Z L, WU W G. Research on factors affecting the slamming pressure peak value of trimaran cross structure[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2008, 32(1): 5–8 (in Chinese).
    [21] 谢仁杰, 董能超, 王珂. 结构物入水砰击过程数值分析[J]. 舰船科学技术, 2016, 38(S1): 60–64.

    XIE R J, DONG N C, WANG K. Numerical analysis on the slamming process of the structure[J]. Ship Science and Technology, 2016, 38(S1): 60–64 (in Chinese).
    [22] 张健, 尤恽, 王珂, 等. 基于气垫效应的二维楔形体入水砰击载荷预报方法研究[J]. 舰船科学技术, 2016, 38(2): 7–12. doi: 10.3404/j.issn.1672-7649.2016.2.002

    ZHANG J, YOU Y, WANG K, et al. Prediction of the slamming pressure on a 2D wedge-shaped section based on the air cushion[J]. Ship Science and Technology, 2016, 38(2): 7–12 (in Chinese). doi: 10.3404/j.issn.1672-7649.2016.2.002
    [23] 陈震, 肖熙. 空气垫在平底结构入水砰击中作用的仿真分析[J]. 上海交通大学学报, 2005, 39(5): 670–673. doi: 10.3321/j.issn:1006-2467.2005.05.002

    CHEN Z, XIAO X. Simulation analysis on the role of air cushion in the slamming of a flat-bottom structure[J]. Journal of Shanghai Jiaotong University, 2005, 39(5): 670–673 (in Chinese). doi: 10.3321/j.issn:1006-2467.2005.05.002
  • 加载中
图(27) / 表(1)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  50
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-07-05

目录

    /

    返回文章
    返回