留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于FLNG装置的紧凑高效换热器的可靠性分析

唐旭 刘涛 宋炜 王洪普

唐旭, 刘涛, 宋炜, 等. 适用于FLNG装置的紧凑高效换热器的可靠性分析[J]. 中国舰船研究, 2020, 15(X): 1–11 doi: 10.19693/j.issn.1673-3185.01917
引用本文: 唐旭, 刘涛, 宋炜, 等. 适用于FLNG装置的紧凑高效换热器的可靠性分析[J]. 中国舰船研究, 2020, 15(X): 1–11 doi: 10.19693/j.issn.1673-3185.01917
TANG X, LIU T, SONG W, et al. Reliability analysis of compact and high efficient heat exchanger for FLNG devices[J]. Chinese Journal of Ship Research, 2020, 15(0): 1–11 doi: 10.19693/j.issn.1673-3185.01917
Citation: TANG X, LIU T, SONG W, et al. Reliability analysis of compact and high efficient heat exchanger for FLNG devices[J]. Chinese Journal of Ship Research, 2020, 15(0): 1–11 doi: 10.19693/j.issn.1673-3185.01917

适用于FLNG装置的紧凑高效换热器的可靠性分析

doi: 10.19693/j.issn.1673-3185.01917
基金项目: 国家重点研发计划资助项目(2018YFC0310400)
详细信息
    作者简介:

    唐旭,男,1991年生,硕士,工程师。研究方向:低温储运。E-mail:xutang28@outlook.com

    刘涛,男,1983年生,博士,高级工程师。研究方向:轮机系统开发设计。E-mail:smuliutao@163.com

    通信作者:

    唐旭

  • 中图分类号: U664.87

Reliability analysis of compact and high efficient heat exchanger for FLNG devices

Funds: National Key Research and Development Program of China (No.2018YFC0310400)
  • 摘要:   目的  目前,紧凑高效换热器已成为海上浮式液化天然气(FLNG)换热装置的最佳选择。为了优化换热器的结构参数并提升工作性能,有必要针对换热器开展静强度分析和可靠性分析。  方法  首先,采用ANSYS Workbench静力学分析模块对换热器芯体进行静强度分析,建立可以代表大部分流道应力水平的简化模型;然后,采用ANSYS Workbench六西格玛分析模块对换热器芯体进行可靠性分析,并选择换热器芯体的冷侧流道壁厚、冷侧流道压力、热侧流道压力和弹性模量等参数作为随机输入变量,进而研究各个随机变量对其可靠性的影响。  结果  可靠性分析结果表明,冷侧流道压力对结构强度的影响最大,且换热器可靠性达99.9%以上,其发生失效的可能性很小。  结论  研究成果可为基于静强度的换热器可靠性分析提供参考。
  • 图  1  相关几何参数

    Figure  1.  Related geometrical parameters

    图  2  Z值分布的计算结果对比

    Figure  2.  The comparison between distribution of the Z's value

    图  3  紧凑高效换热器的简化模型

    Figure  3.  Simplified model of compact and high efficient exchanger

    图  4  简化模型的网格划分示意图

    Figure  4.  Mesh diagram of the simplified model

    图  5  热侧流道压力(2.5 MPa)

    Figure  5.  Hot channel pressure (2.5 MPa)

    图  6  冷侧流道压力(20 MPa)

    Figure  6.  Cold channel pressure (20 MPa)

    图  7  换热器芯体的应力强度分布

    Figure  7.  Stress intensity distribution of heat exchanger core

    图  8  冷侧流道尖角处的应力集中

    Figure  8.  Stress concentration near a cold channel tip

    图  9  中间冷侧流道的路径设置

    Figure  9.  Path setting of intermediate cold channel

    图  10  不同网格数量下冷侧流道之间的薄膜应力

    Figure  10.  Membrane stress between the cold channels for various element quantities

    图  11  不同网格数下冷侧流道之间的薄膜应力与弯曲应力之和

    Figure  11.  Sum of membrane stress and bending stress between the cold channels for various element quantities

    图  12  不同简化模型冷侧流道之间的薄膜应力与弯曲应力之和

    Figure  12.  Sum of membrane stress and bending stress between the cold channels for different simplified models

    图  13  可靠性分析模型的网格划分

    Figure  13.  Mesh division in the reliability analysis model

    图  14  灵敏度分析

    Figure  14.  Stress sensitivity analysis

    图  15  响应面

    Figure  15.  Response surface

    图  16  概率密度和累积分布函数

    Figure  16.  Probability density and empirical cumulative function

    表  1  紧凑高效换热器的设计参数

    Table  1.   The design parameters of compact and high efficient heat exchanger

    设计参数数值或内容
    材料S31603
    冷侧流道直径DC /mm1.5
    热侧流道直径Dh /mm1.5
    热侧流道X向间距W/mm2
    热侧流道Z向间距V/mm3.5
    冷侧流道Y向间距U/mm2.0
    冷侧流道与热侧流道的Z向间距R/mm1.0
    冷侧流道Z向间距H/mm3.5
    冷侧流道流体液氮
    热侧流道流体丙烷
    冷侧流道进口温度/℃−188.7
    热侧流道进口温度/℃−5
    冷侧流道设计压力最大值/MPa20
    热侧流道设计压力最大值/MPa2.5
    冷侧流道压力范围/MPa5~20
    热侧流道压力范围/MPa0.4~2.5
    下载: 导出CSV

    表  2  S31603的材料物性

    Table  2.   Material properties of S31603

    物性类别数值
    弹性模量/Pa2.06×1011
    密度/(kg·m−3)7 980
    泊松比0.3
    下载: 导出CSV

    表  3  S31603的许用应力[10]

    Table  3.   Allowable stress of S31603

    温度
    T/℃
    ASME BPVC 第Ⅲ卷
    许用应力S0/MPa
    ASME BPVC 第Ⅷ卷
    许用应力S/MPa
    38115.1184.2
    93115.1184.2
    149115.1184.2
    204108.2173.2
    260102.0163.3
    31696.5154.4
    37193.1148.9
    42789.0142.3
    下载: 导出CSV

    表  4  网格划分方案

    Table  4.   The mesh generation scheme

    模型网格尺寸/mm网格数量
    2×2×2 0.100 124 889
    0.050 1 154 318
    0.025 2 140 219
    0.020 3 469 116
    0.015 6 401 830
    0.012 5 9 330 970
    0.010 14 048 858
    4×4×4 0.100 1 140 340
    0.050 4 243 567
    0.045 4 496 539
    0.040 6 481 493
    0.035 9 733 098
    0.030 13 208 800
    0.025 19 090 135
    8×8×8 0.100 8 297 178
    0.090 8 990 985
    0.080 13 715 988
    0.070 19 583 615
    下载: 导出CSV

    表  5  随机输入变量的正态分布参数

    Table  5.   Normal distribution parameters of input random variable

    变量名称均值标准差
    冷侧流道壁厚$\delta $/ mm0.50.01
    弹性模量E/ MPa206 0003 269.7
    冷侧流道压力pcold/ MPa12.52.5
    热侧流道压力 phot/ MPa1.450.35
    下载: 导出CSV

    表  6  薄膜应力的概率列表

    Table  6.   Probability table of membrane stress

    薄膜应力/MPa概率西格玛级数薄膜应力/MPa概率西格玛级数
    9.527 7920.000 069−3.810 6141.414 270.637 5170.351 83
    11.805 4000.000 157−3.603 4643.691 870.731 4780.617 288
    14.083 000.000 354−3.386 4245.969 480.812 4790.887 068
    16.360 610.001 674−2.933 8848.247 080.873 5481.143 325
    18.638 210.004 987−2.576 7650.524 690.920 7451.410 097
    20.915 820.010 497−2.308 0852.802 300.955 0921.696 365
    23.193 420.022 878−1.997 6455.079 900.975 4181.967 169
    25.471 030.046 698−1.677 7557.357 510.987 7752.249 978
    27.748 640.085 285−1.370 3759.635 110.994 6572.552 79
    30.026 240.137 771−1.090 3961.912 720.997 5162.809 12
    32.303 850.215 568−0.787 2564.190 320.999 2193.162 882
    34.581 450.314 733−0.482 4866.467 930.999 833.582 305
    36.859 060.421 975−0.196 8468.745 530.999 9313.810 609
    39.136 660.525 3260.063 525
    下载: 导出CSV

    表  7  薄膜应力与弯曲应力之和的概率列表

    Table  7.   Probability table of sum of membrane stress and bending stress

    薄膜应力与弯曲应力之和/MPa概率西格玛级数薄膜应力与弯曲应力之和/MPa概率西格玛级数
    11.909 600.000 069−3.810 6162.775 280.837 950.986 066
    15.542 870.000 243−3.488 4666.408 540.887 4371.213 01
    19.176 130.002 071−2.867 1770.041 80.928 2631.462 976
    22.809 390.008 03−2.407 5573.675 060.954 4611.689 74
    26.442 650.022 498−2.004 7077.308 320.974 9781.959 588
    30.075 910.054 555−1.602 2180.941 590.986 9082.223 469
    33.709 180.100 593−1.278 1884.574 850.993 652.492 056
    37.342 440.169 529−0.956 0388.208 110.997 6252.823 514
    40.975 700.266 875−0.622 2991.841 370.999 0193.095 952
    44.608 960.377 615−0.311 7595.474 640.999 6383.380 586
    48.242 230.487 215−0.032 0599.107 900.999 8613.635 545
    51.875 490.589 4350.226 091102.741 200.999 9023.723 077
    55.508 750.689 5850.494 675106.374 400.999 9313.810 609
    59.142 010.772 4170.746 831
    下载: 导出CSV
  • 王康硕, 任韬, 丁国良, 等. 浮式液化天然气用印刷板路换热器研究和应用进展[J]. 制冷学报, 2016, 37(2): 70–77. doi: 10.3969/j.issn.0253-4339.2016.02.070

    WANG K S, REN T, DING G L, et al. Progress of research and application of printed circuit heat exchanger for offshore LNG platform[J]. Journal of Refrigeration, 2016, 37(2): 70–77 (in Chinese). doi: 10.3969/j.issn.0253-4339.2016.02.070
    PRA F, TOCHON P, MAUGET C, et al. Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle[J]. Nuclear Engineering and Design, 2008, 238(11): 3160–3173. doi: 10.1016/j.nucengdes.2007.12.024
    KIM E S, OH C H, SHERMAN S. Simplified optimum sizing and cost analysis for compact heat exchanger in VHTR[J]. Nuclear Engineering and Design, 2008, 238(10): 2635–2647. doi: 10.1016/j.nucengdes.2008.05.012
    PIERRES R L, SOUTHALL D, OSBORNE S. Impact of mechanical design issues on printed circuit heat exchangers[C]//Proceedings of SCO2 Power Cycles Symposium. Boulder, USA: University of Colorado Boulder, 2011.
    SONG K N. Structural behavior analysis on a small-scale PCHE prototype under high-temperature gas loop conditions[J]. Structural Durability and Health Monitoring, 2011, 7(4): 297–305.
    LEE Y, LEE J I. Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle[J]. Annals of Nuclear Energy, 2014, 73: 84–95. doi: 10.1016/j.anucene.2014.06.022
    ZHANG X, SUN X, CHRISTENSEN R N, et al. Preliminary structural assessment of a printed circuit heat exchanger with S-shaped fins[C]// Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16). Chicago, USA: [s. n. ], 2015: 7674-7687.
    张明辉, 邱胜闻, 李银宾, 等. 印刷电路板式换热器板片流道结构应力状况数值分析[C]//第二届中国液化天然气储运技术交流会论文集. 广州: 中国石油学会, 2016: 666-670.

    ZHANG M H, QIU S W, LIN Y B, et al. Numerical analysis on the structural stress of the printed circuit heat exchanger plate[C]// Proceedings of the 2nd China LNG Storage and Transportation Technology Exchange Meeting. Guangzhou: China Petroleum Institute, 2016: 666-670 (in Chinese).
    于改革, 姚志燕, 陈永东, 等. 印刷电路板式换热器板片结构强度设计[J]. 压力容器, 2018, 35(12): 42–46, 33. doi: 10.3969/j.issn.1001-4837.2018.12.006

    YU G G, YAO Z Y, CHEN Y D, et al. Study on the strength design of the plate of printed circuit heat exchanger[J]. Pressure Vessel Technology, 2018, 35(12): 42–46, 33 (in Chinese). doi: 10.3969/j.issn.1001-4837.2018.12.006
    BENNETT K, CHEN Y T. One-way coupled three-dimensional fluid-structure interaction analysis of zigzag-channel supercritical CO2 printed circuit heat exchangers[J]. Nuclear Engineering and Design, 2020, 358: 110434. doi: 10.1016/j.nucengdes.2019.110434
    刘贞谷, 姜露, 庾明达, 等. 压力容器堆芯筒体应力强度可靠性研究[C]//中国核学会2019年学术年会论文集. 北京: 中国原子能出版社, 2019: 373-379.

    LIU Z G, JIANG L, YU M D, et al. Stress intensity reliability analysis to the barrel of pressure vessel reactor core[C]// Proceedings of the 2019 annual meeting of the Chinese Nuclear Society. Beijing: China Atomic Energy Press, 2019: 373-379 (in Chinese).
    李兆锋, 江楠. 基于有限元法对带接管压力容器的可靠性分析[J]. 石油化工设备, 2011, 40(1): 21–25. doi: 10.3969/j.issn.1000-7466.2011.01.006

    LI Z F, JIANG N. Reliability analysis to pressure vessel with nozzle based on finite element method[J]. Petro-Chemical Equipment, 2011, 40(1): 21–25 (in Chinese). doi: 10.3969/j.issn.1000-7466.2011.01.006
    尹志宏, 袁洁, 朱佳明, 等. 基于ANSYS的甘蔗切割器上臂轴的可靠性影响因素分析[J]. 中国工程机械学报, 2016, 14(4): 358–363.

    YIN Z H, YUAN J, ZHU J M, et al. ANSYS-based reliability impact factor analysis on upper boom shaft for sugarcane cutters[J]. Chinese Journal of Construction Machinery, 2016, 14(4): 358–363 (in Chinese).
    American Society of Mechanical Engineers. ASME BPVC Section III Division 1, Subsection NB[S]. [S.l.]: ASME, 2017.
    American Society of Mechanical Engineers. ASME BPVC Section VIII Division 1[S]. [S.l.]: ASME, 2019.
    中华人民共和国机械工业工业部. 钢制压力容器-分析设计标准: JB 4732-1995[S]. 北京: 中国机械工业出版社, 1995.

    Ministry of Machine-Building Industry of the PRC. Steel pressure vessels-design by analysis: JB 4732-1995[S]. Beijing: China Machine Press, 1995 (in Chinese).
    MOSS D R. Pressure vessel design manual[M]. 3rd ed. Burlington, USA: Gulf Professional Publishing, 2004.
    时黛, 谢禹钧, 林国庆. 固定管板式换热器管板与换热管的可靠性分析[J]. 当代化工, 2011, 40(9): 959–962. doi: 10.3969/j.issn.1671-0460.2011.09.023

    SHI D, XIE Y J, LIN G Q. Reliability analysis of tube plates and tubes in fixed tube-sheet heat exchanger[J]. Contemporary Chemical Industry, 2011, 40(9): 959–962 (in Chinese). doi: 10.3969/j.issn.1671-0460.2011.09.023
    刘惟信. 机械可靠性设计[M]. 北京: 清华大学出版社, 1996: 197-208.

    LIU W X. Mechanical reliability design[M]. Beijing: Tsinghua University Press, 1996: 197-208 (in Chinese).
    杜军鸽. 基于ANSYS的CNG储气钢瓶的可靠性分析和疲劳分析[D]. 乌鲁木齐: 新疆大学, 2008.

    DU J G. Reliability analysis and fatigue analysis for CNG storage gas pressure vessel using finite element method[D]. Urumqi: Xinjiang University, 2008 (in Chinese).
    王豪. 起重机底盘翻转机回转轴可靠性分析[J]. 机械工程师, 2015(5): 61–63. doi: 10.3969/j.issn.1002-2333.2015.05.024

    WANG H. Reliability analysis of the spindle in the crane chassis upender[J]. Mechanical Engineer, 2015(5): 61–63 (in Chinese). doi: 10.3969/j.issn.1002-2333.2015.05.024
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  42
  • PDF下载量:  1006
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-06-28
  • 网络出版日期:  2020-12-10

目录

    /

    返回文章
    返回