[1]
|
裴大茗,王建峰,周鹏太,等. 船舶PHM技术综述[J]. 电子测量与仪器学报, 2016, 30(9):1289-1297. PEI D M,WANG J F,ZHOU P T,et al. Survey on PHM technology in marine system[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(9):1289-1297(in Chinese). |
[2]
|
贾宝柱,贾志涛,赵祥. 基于信息融合的船舶中央冷却系统运行状态评估[J]. 大连海事大学学报, 2017,43(4):89-96. JIA B Z,JIA Z T,ZHAO X. Operating condition evaluation of ship central cooling system based on information fusion[J]. Journal of Dalian Maritime University, 2017,43(4):89-96(in Chinese). |
[3]
|
贺立敏,王岘昕,韩冰. 基于随机森林和支持向量机的船舶柴油机故障诊断[J]. 中国航海,2017,40(2):29-33. HE L M,WANG X X,HAN B. Fault diagnosis of marine diesel engine based on random forest and support vector machine[J]. Navigation of China,2017,40(2):29-33(in Chinese). |
[4]
|
ZHANG J H,LIU Y. Application of complete ensemble intrinsic time-scale decomposition and leastsquare SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Frontiers of Information Technology & Electronic Engineering,2017, 18(2):272-286. |
[5]
|
XI W K,LI Z X,TIAN Z,et al. A feature extraction and visualization method for fault detection of marine diesel engines[J]. Measurement, 2018, 116:429-437. |
[6]
|
雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报,2018,54(5):94-104. LEI Y G,JIA F,KONG D T,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018,54(5):94-104(in Chinese). |
[7]
|
TAMILSELVAN P,WANG P F. Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety,2013, 115:124-135. |
[8]
|
车畅畅,王华伟,倪晓梅,等. 基于深度学习的航空发动机故障融合诊断[J]. 北京航空航天大学学报, 2018,44(3):621-628. CHE C C,WANG H W,NI X M,et al. Fault fusion diagnosis of aero-engine based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2018,44(3):621-628(in Chinese). |
[9]
|
李本威,林学森,杨欣毅,等. 深度置信网络在发动机气路部件性能衰退故障诊断中的应用研究[J]. 推进技术,2016,37(11):2173-2180. LI B W,LIN X S,YANG X Y,et al. Research on application of deep belief networks on engine gas path component performance degradation defect diagnostics[J]. Journal of Propulsion Technology, 2016, 37(11):2173-2180(in Chinese). |
[10]
|
贾继德,贾翔宇,梅检民,等. 基于小波与深度置信网络的柴油机失火故障诊断[J]. 汽车工程, 2018,40(7):838-843. JIA J D,JIA X Y,MEI J M,et al. Misfire fault diagnosis of diesel engine based on wavelet and deep belief network[J]. Automotive Engineering,2018,40(7):838-843(in Chinese). |
[11]
|
李军亮,滕克难,夏菲. 基于深度学习的军用飞机部件状态参数预测[J]. 振动与冲击,2018,37(6):61-67,85. LI J L,TENG K N,XIA F. Military aircraft components state parameters prediction using the deep belief learning[J]. Journal of Vibration and Shock, 2018,37(6):61-67,85(in Chinese). |
[12]
|
HINTON G E. A practical guide to training restricted Boltzmann machines[M]//MONTAVON G,ORR G B,MULLER K R. Neural networks:tricks of the trade.[S.l.:s.n.],2012:599-619. |
[13]
|
HINTON G E,OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation,2006,18(7):1527-1554. |
[14]
|
王忠巍,袁志国,马修真,等. 一种不依赖特征样本的柴油机故障诊断方法研究[J]. 哈尔滨工程大学学报,2017,38(6):881-886. WANG Z W,YUAN Z G,MA X Z,et al. A diesel engine fault diagnosis method independent of feature samples[J]. Journal of Harbin Engineering University,2017,38(6):881-886(in Chinese). |
[15]
|
RUBIO J A P,VERA G F,GRAU J H,et al. Marine diesel engine failure simulator based on thermodynamic model[J]. Applied Thermal Engineering,2018, 144:982-995. |