[1] FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. Hoboken: Wiley, 2011.
[2] ESTEBAN S, GIRON-SIERRA J M, DE ANDRES-TORO B, et al. Fast ships models for seakeeping improvement studies using flaps and T-Foil[J]. Mathematical and Computer Modelling, 2005, 41(1): 1–24. doi: 10.1016/j.mcm.2004.09.002
[3] GIRON-SIERRA J M, RECAS J, ESTEBAN S. Iterative method based on CFD data for the assessment of seakeeping control effects, considering amplitude and rate saturation[J]. International Journal of Robust and Nonlinear Control, 2011, 21(13): 1562–1573. doi: 10.1002/rnc.1653
[4] FANG C C, CHAN H S. An investigation on the vertical motion sickness characteristics of a high-speed catamaran ferry[J]. Ocean Engineering, 2007, 34(14–15): 1909–1917. doi: 10.1016/j.oceaneng.2007.04.001
[5] 原新, 张欣. 三体船纵向减摇附体设计及减摇效果分析[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(4): 554–558.

YUAN X, ZHANG X. The design of longitudinal damping appendage and the effect on trimaran[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(4): 554–558 (in Chinese).
[6] 郑义, 董文才. 高速轻型穿浪双体船纵向运动改善措施研究[J]. 中国舰船研究, 2012, 7(2): 14–19. doi: 10.3969/j.issn.1673-3185.2012.02.003

ZHENG Y, DONG W C. Improvement of longitudinal motion performance of high speed light wave-piercing catamaran by hydrofoils[J]. Chinese Journal of Ship Research, 2012, 7(2): 14–19 (in Chinese). doi: 10.3969/j.issn.1673-3185.2012.02.003
[7] 孙一方, 宗智, 姜宜辰. 船舶在波浪上纵向运动与控制研究综述[J]. 中国舰船研究, 2020, 15(1): 1–12, 47. doi: 10.19693/j.issn.1673-3185.01751

SUN Y F, ZONG Z, JIANG Y C. Review of longitudinal motion and controls of ships on waves[J]. Chinese Journal of Ship Research, 2020, 15(1): 1–12, 47 (in Chinese). doi: 10.19693/j.issn.1673-3185.01751
[8] DE LA CRUZ J, ARANDA J, GIRON-SIERRA J M, et al. Improving the comfort of a fast ferry[J]. IEEE Control Systems Magazine, 2004, 24(2): 47–60. doi: 10.1109/MCS.2004.1275431
[9] ARANDA J, DE LA CRUZ J, DÍAZA J M. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries[J]. Control Engineering Practice, 2005, 13(8): 985–999. doi: 10.1016/j.conengprac.2004.11.003
[10] JAVAD A, JASON L, MICHAEL R D, et al. An experimental investigation of ride control algorithms for high-speed catamarans Part 1: reduction of ship motions[J]. Journal of Ship Research, 2017, 61(1): 35–49. doi: 10.5957/jsr.2017.61.1.35
[11] ZHANG J, SUN T R, LIU Z L. Robust model predictive control for path-following of underactuated surface vessels with roll constraints[J]. Ocean Engineering, 2017, 143: 125–132. doi: 10.1016/j.oceaneng.2017.07.057
[12] KUCUKDEMIRALA I B, CAKICIB F, YAZICIC H. A model predictive vertical motion control of a passenger ship[J]. Ocean Engineering, 2019, 186: 106100. doi: 10.1016/j.oceaneng.2019.06.005
[13] 赵希人, 唐慧妍, 彭秀艳. 船舶横向运动多变量随机控制研究[J]. 船舶力学, 2004, 8(5): 35–41. doi: 10.3969/j.issn.1007-7294.2004.05.005

ZHAO X R, TANG H Y, PENG X Y. Multivariant stochastic control research on ship lateral movement[J]. Journal of Ship Mechanics, 2004, 8(5): 35–41 (in Chinese). doi: 10.3969/j.issn.1007-7294.2004.05.005
[14] 王福军, 丁小燕, 王前, 等. 自适应强跟踪Sage-Husa卡尔曼滤波器载波环设计[J]. 电光与控制, 2019, 26(10): 12–16. doi: 10.3969/j.issn.1671-637X.2019.10.003

WANG F J, DING X Y, WANG Q, et al. Design of carrier tracking loop based on adaptive strong tracking Sage-Husa Kalman filter[J]. Electronics Optics & Control, 2019, 26(10): 12–16 (in Chinese). doi: 10.3969/j.issn.1671-637X.2019.10.003