[1] WANG K, YAN X P, YUAN Y P, et al. Real-time optimization of ship energy efficiency based on the prediction technology of working condition[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 81–93. doi: 10.1016/j.trd.2016.03.014
[2] 胡琼, 陈凯, 孙权. 新船能效设计指数及应对策略分析[J]. 中国造船, 2011, 52(增刊 1): 27–32.

HU Q, CHEN K, SUN Q. Energy efficiency design index (EEDI) for new ships and coping strategies analysis[J]. Shipbuilding of China, 2011, 52(Supp 1): 27–32 (in Chinese).
[3] WANG K, LI J Y, YAN X P, et al. A novel bi-level distributed dynamic optimization method of ship fleets energy consumption[J]. Ocean Engineering, 2020, 197: 106802. doi: 10.1016/j.oceaneng.2019.106802
[4] 王凯, 严新平, 袁裕鹏. 基于改进粒子群算法的船舶发电机选型优化研究[J]. 中国造船, 2016, 57(1): 201–209. doi: 10.3969/j.issn.1000-4882.2016.01.022

WANG K, YAN X P, YUAN Y P. Optimal selection of marine generator based on improved particle swarm algorithm[J]. Shipbuilding of China, 2016, 57(1): 201–209 (in Chinese). doi: 10.3969/j.issn.1000-4882.2016.01.022
[5] 中国船级社. 智能船舶规范[S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn.

Chinese Classification Society. Smart ship specifications[S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn (in Chinese).
[6] 刘伊凡, 黄连忠, 孙培廷, 等. 实船数据环境下船舶主柴油机性能评估方法[J]. 内燃机学报, 2018, 36(2): 182–191.

LIU Y F, HUANG L Z, SUN P T, et al. A performance estimation method for main diesel engine in shipping data environment[J]. Transactions of CSICE, 2018, 36(2): 182–191 (in Chinese).
[7] 中国船级社. 船舶智能能效管理检验指南[S/OL]. (2018-09-01)[2020-03-12]. http://www.ccs.org.cn.

Chinese Classification Society. Ship intelligent energy efficiency management inspection guidelines [S/OL]. (2020-03-01)[2020-03-12]. http://www.ccs.org.cn (in Chinese).
[8] WANG K, YAN X P, YUAN Y P, et al. Design of ship energy efficiency monitoring and control system considering environmental factors[C]//Proceedings of 2015 International Conference on Transportation Information and Safety (ICTIS). Wuhan, China: IEEE, 2015.
[9] HANSEN H, FREUND M. Assistance tools for operational fuel efficiency[C]//Proceedings of the 9th International Conference on Computer and IT Applications in the Maritime Industries. Gubio, Italy: [s. n. ], 2010.
[10] ABB赢得STX芬兰船舶自动化系统订单[J]. 自动化应用, 2012(10): 8.

ABB wins order for STX Finland ship automation system[J]. Automation Application, 2012(10): 8 (in Chinese).
[11] FAN A L, YAN X P, YIN Q Z. A multisource information system for monitoring and improving ship energy efficiency[J]. Journal of Coastal Research, 2016, 32(5): 1235–1245.
[12] WANG K, YAN X P, YUAN Y P, et al. Dynamic optimization of ship energy efficiency considering time-varying environmental factors[J]. Transportation Research Part D: Transport and Environment, 2018, 62: 685–698. doi: 10.1016/j.trd.2018.04.005
[13] 蔡德清, 张燃, 郑士君, 等. 中远集运船舶燃油监控系统[J]. 航海技术, 2008(5): 57–59.

CAI D Q, ZHANG R, ZHENG S J, et al. COSCO ship's fuel monitoring system[J]. Marine Technology, 2008(5): 57–59 (in Chinese).
[14] 郑士君, 黄爱平, 岳跃申, 等. 海运企业能效管理信息系统研发[J]. 中国航海, 2010, 33(4): 53–56. doi: 10.3969/j.issn.1000-4653.2010.04.013

ZHENG S J, HUANG A P, YUE Y S, et al. Research and development on energy efficiency management information system for shipping companies[J]. Navigation of China, 2010, 33(4): 53–56 (in Chinese). doi: 10.3969/j.issn.1000-4653.2010.04.013
[15] 熊林. 基于北斗卫星通讯的船舶油耗管理系统设计[D]. 厦门: 集美大学, 2015.

XIONG L. Design of marine fuel management system based on BeiDou satellite communication[D]. Xiamen: Jimei University, 2015 (in Chinese).
[16] 苏一, 张倩墨. 基于能效管理的船舶航速系统优化设计[J]. 上海船舶运输科学研究所学报, 2014, 37(2): 43–49. doi: 10.3969/j.issn.1674-5949.2014.02.009

SU Y, ZHANG Q M. Design of energy efficiency oriented sailing speed optimization system[J]. Journal of Shanghai Ship and Shipping Research Institute, 2014, 37(2): 43–49 (in Chinese). doi: 10.3969/j.issn.1674-5949.2014.02.009
[17] 阳世荣. 船舶辅机节能控制与管理技术研究[J]. 中国造船, 2012, 53(增刊 1): 226–232.

YANG S R. Research on energy saving control and management technology of marine auxiliary machine[J]. Shipbuilding of China, 2012, 53(Supp 1): 226–232 (in Chinese).
[18] WANG K, YAN X P, YUAN Y P. Fuzzy logic method for ship energy efficiency decision-making model to determine optimal engine speed[J]. Sea Technology, 2015, 56(11): 45–46.
[19] 吴军, 万晓跃, 孙永刚, 等. 在船舶“智能能效”设计时应关注的几个要点[J]. 船舶, 2018, 29(增刊 1): 42–51.

WU J, WAN X Y, SUN Y G, et al. Several points to be concerned in the design of ship's "intelligent energy efficiency"[J]. Ship & Boat, 2018, 29(Supp 1): 42–51 (in Chinese).
[20] 郑洪燕, 王跃, 朱军. 船舶智能能效管理系统设计[J]. 水运管理, 2018, 40(11): 25–28. doi: 10.3969/j.issn.1000-8799.2018.11.008

ZHENG H Y, WANG Y, ZHU J. Design of ship intelligent energy efficiency management system[J]. Shipping Management, 2018, 40(11): 25–28 (in Chinese). doi: 10.3969/j.issn.1000-8799.2018.11.008
[21] KAMBATLA K, KOLLIAS G, KUMAR V, et al. Trends in big data analytics[J]. Journal of Parallel and Distributed Computing, 2014, 74(7): 2561–2573. doi: 10.1016/j.jpdc.2014.01.003
[22] XIE H L, HE Y F, XIE X. Exploring the factors influencing ecological land change for China's Beijing-Tianjin-Hebei Region using big data[J]. Journal of Cleaner Production, 2017, 142: 677–687. doi: 10.1016/j.jclepro.2016.03.064
[23] 韩丽莎. 浅谈大数据与数据挖掘技术[J]. 计算机产品与流通, 2018(8): 112–131.

HAN L S. Talking about big data and data mining technology[J]. Computer Products and Circulation, 2018(8): 112–131 (in Chinese).
[24] 万辉, 张建雄, 高嵩, 等. 内河船舶大数据关键技术研究[J]. 中国水运, 2017, 38(11): 47–50.

WAN H, ZHANG J X, GAO S, et al. Research on key technologies of inland ship big data[J]. China Water Transport, 2017, 38(11): 47–50 (in Chinese).
[25] Klaveness Digital Company. A big data platform[EB/OL]. (2018-08-24) [2020-03-12]. http://www.Klavenessdigital.com.
[26] PERERA L P, MO B. Machine intelligence for energy efficient ships: a big data solution[C]//Proceedings of the 3rd International Conference on Maritime Technology and Engineering (MARTECH 2016). Lisbon, Portugal: [s. n. ], 2016.
[27] BOCCHETTI D, LEPORE A, PALUMBO B, et al. A statistical approach to ship fuel consumption monitoring[J]. Journal of Ship Research, 2015, 59(3): 162–171. doi: 10.5957/JOSR.59.3.150012
[28] 林俊, 葛海龙, 李晓陆, 等. 江海直达绿色船舶能效大数据监控平台[J]. 船舶, 2018, 29(增刊 1): 111–126.

LIN J, GE H L, LI X L, et al. Jianghai direct green ship energy efficiency big data monitoring platform[J]. Ship & Boat, 2018, 29(Supp 1): 111–126 (in Chinese).
[29] 谢云鹏, 董良雄, 施怡然, 等. 基于大数据技术的船舶油耗监测系统设计[J]. 水运管理, 2018, 40(9): 34–36. doi: 10.3969/j.issn.1000-8799.2018.09.010

XIE Y P, DONG L X, SHI Y R, et al. Design of ship fuel consumption monitoring system based on big data technology[J]. Shipping Management, 2018, 40(9): 34–36 (in Chinese). doi: 10.3969/j.issn.1000-8799.2018.09.010
[30] 孙峰, 黄连忠, 刘伊凡, 等. 一种应用数据挖掘技术评估柴油机性能的方法[J]. 大连海事大学学报, 2017, 43(3): 83–88.

SUN F, HUANG L Z, LIU Y F, et al. A method of evaluating diesel engine performance by using data mining technology[J]. Journal of Dalian Maritime University, 2017, 43(3): 83–88 (in Chinese).
[31] ADLAND R O, JIA H. Vessel speed analytics using satellite-based ship position data[C]//Proceedings of 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). Bali, Indonesia: IEEE, 2016: 1299–1303.
[32] CORADDU A, FIGARI M, SAVIO S. Numerical investigation on ship energy efficiency by Monte Carlo simulation[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2014, 228(3): 220–234. doi: 10.1177/1475090214524184
[33] LEE H, AYDIN N, CHOI Y, et al. A decision support system for vessel speed decision in maritime logistics using weather archive big data[J]. Computers & Operations Research, 2018, 98: 330–342.
[34] 韩佳彤. 基于大数据分析的海上智能航线设计[J]. 珠江水运, 2016(1): 78–79. doi: 10.3969/j.issn.1672-8912.2016.01.037

HAN J T. Design of intelligent routes at sea based on big data analysis[J]. Pearl River Water Transport, 2016(1): 78–79 (in Chinese). doi: 10.3969/j.issn.1672-8912.2016.01.037
[35] YAN X P, WANG K, YUAN Y P, et al. Energy-efficient shipping: an application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors[J]. Ocean Engineering, 2018, 169: 457–468. doi: 10.1016/j.oceaneng.2018.08.050
[36] 陈伟南, 黄连忠, 张勇, 等. 基于BP神经网络的船舶主机能效状态评估[J]. 中国舰船研究, 2018, 13(4): 127–133, 160.

CHEN W N, HUANG L Z, ZHANG Y, et al. Evaluation of main engine energy efficiency based on BP neural network[J]. Chinese Journal of Ship Research, 2018, 13(4): 127–133, 160 (in Chinese).
[37] YAN X P, SUN X, YIN Q Z. Multiparameter sensitivity analysis of operational energy efficiency for inland river ships based on backpropagation neural network method[J]. Marine Technology Society Journal, 2015, 49(1): 148–153. doi: 10.4031/MTSJ.49.1.5
[38] YUAN J, WEI S M. Comparison of using artificial neural network and Gaussian process in ship energy consumption evaluation[C]//Proceedings of 2018 Joint International Conference on Energy, Ecology and Environment (ICEEE 2018) and International Conference on Electric and Intelligent Vehicles (ICEIV 2018). Melbourne, Australia: [s. n. ], 2018.
[39] BAL BEŞIKÇI E B, ARSLAN O, TURAN O, et al. An artificial neural network based decision support system for energy efficient ship operations[J]. Computers & Operations Research, 2016, 66: 393–401.
[40] PAGOROPOULOS A, MØLLER A H, MCALOONE T C. Applying multi-class support vector machines for performance assessment of shipping operations: the case of tanker vessels[J]. Ocean Engineering, 2017, 140: 1–6. doi: 10.1016/j.oceaneng.2017.05.001
[41] LU R H, TURAN Q, BOULOUGOURIS E. Voyage optimisation: prediction of ship specific fuel consumption for energy efficient shipping[C]//Proceedings of the 3rd International Conference onTechnologies, Operations, Logistics and Modelling for Low Carbon Shipping. London: [s. n. ], 2013.
[42] WICKRAMANAYAKE S, DILUM BANDARA H M N. Fuel consumption prediction of fleet vehicles using machine learning: a comparative study[C]//Proceedings of 2016 Moratuwa Engineering Research Conference. Sri Lanka: IEEE, 2016.
[43] ALONSO J M, ALVARRUIZ F, DESANTES J M, et al. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 46–55. doi: 10.1109/TEVC.2006.876364
[44] TILLIG F, RINGSBERG J W, MAO W G, et al. Analysis of uncertainties in the prediction of ships' fuel consumption-from early design to operation conditions[J]. Ships and Offshore Structures, 2018, 13(1): 13–24.
[45] YANG L Q, CHEN G, RYTTER N G M, et al. A genetic algorithm-based grey-box model for ship fuel consumption prediction towards sustainable shipping[J/OL]. An-nals of Operations Research, 2019. https://link.springer.com/article/10.1007/s10479-019-03183-5#citeas
[46] 王胜正, 申心泉, 赵建森, 等. 基于ASAE深度学习预测海洋气象对船舶航速的影响[J]. 交通运输工程学报, 2018, 18(2): 139–147. doi: 10.3969/j.issn.1671-1637.2018.02.015

WANG S Z, SHEN X Q, ZHAO J S, et al. Prediction of marine meteorological effect on ship speed based on ASAE deep learning[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 139–147 (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.02.015
[47] 王寰宇. 远洋船舶分段航速优化及其智能算法研究[D]. 大连: 大连海事大学, 2018.

WANG H Y. Ocean ship segmentation speed optimization and intelligent algorithms[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).
[48] MARIE S, COURTEILLE E. Sail-assisted motor vessels weather routing using a fuzzy logic model[J]. Journal of Marine Science and Technology, 2013, 19(3): 265–279.
[49] WANG K, LI J Y, HUANG L Z, et al. A novel joint optimization method of sailing route and speed considering environmental conditions towards energy efficient shipping[J]. Ocean Engineering, 2020, 216: 107591. doi: 10.1016/j.oceaneng.2020.107591
[50] LAZAROWSKA A. Ant colony optimization based navigational decision support system[J]. Procedia Computer Science, 2014, 35: 1013–1022. doi: 10.1016/j.procs.2014.08.187
[51] MENG Q, WANG T S. A scenario-based dynamic programming model for multi-period liner ship fleet planning[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(4): 401–413. doi: 10.1016/j.tre.2010.12.005
[52] SEN D, PADHY C P. An approach for development of a ship routing algorithm for application in the North Indian Ocean region[J]. Applied Ocean Research, 2015, 50: 173–191. doi: 10.1016/j.apor.2015.01.019
[53] 刘浩, 刘维亭, 吴将. 一种新型的船舶航线规划设计[J]. 电子测试, 2014(1): 49–50.

LIU H, LIU W T, WU J. A new design of ship routes planning[J]. Electronic Test, 2014(1): 49–50 (in Chinese).
[54] ZHANG S K, SHI G Y, LIU Z J, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240–250. doi: 10.1016/j.oceaneng.2018.02.060
[55] ZACCONE R, OTTAVIANI E, FIGARI M, et al. Ship voyage optimization for safe and energy-efficient navigation: a dynamic programming approach[J]. Ocean Engineering, 2018, 153: 215–224. doi: 10.1016/j.oceaneng.2018.01.100
[56] WANG H L, MAO W G, ERIKSSON L. A three-dimensional Dijkstra's algorithm for multi-objective ship voyage optimization[J]. Ocean Engineering, 2019, 186: 106131. doi: 10.1016/j.oceaneng.2019.106131
[57] MA D F, MA W H, JIN S, et al. Method for simultaneously optimizing ship route and speed with emission control areas[J]. Ocean Engineering, 2020, 202: 107170. doi: 10.1016/j.oceaneng.2020.107170
[58] SHAO W, ZHOU P L, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239–251. doi: 10.1007/s00773-011-0152-z
[59] 黄连忠, 万晓跃, 孙永刚, 等. 基于模拟退火算法的船舶航速优化研究[J]. 船舶, 2018, 29(增刊 1): 8–17.

HUANG L Z, WAN X Y, SUN Y G, et al. Research on ship speed optimization based on simulated annealing algorithm[J]. Ship & Boat, 2018, 29(Supp 1): 8–17 (in Chinese).
[60] SONG Y J, YUE Y X. Optimization model of fleet deployment plan of liners[J]. Procedia Engineering, 2016, 137: 391–398. doi: 10.1016/j.proeng.2016.01.273
[61] QI X T, SONG D P. Minimizing fuel emissions by optimizing vessel schedules in liner shipping with uncertain port times[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(4): 863–880. doi: 10.1016/j.tre.2012.02.001
[62] WANG K, YAN X P, YUAN Y P, et al. Optimizing ship energy efficiency: application of particle swarm optimization algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2018, 232(4): 379–391. doi: 10.1177/1475090216638879
[63] 马冉祺, 黄连忠, 魏茂苏, 等. 基于实船监测数据的定航线船舶智能航速优化[J]. 大连海事大学学报, 2018, 44(1): 31–35.

MA R Q, HUANG L Z, WEI M S, et al. Intelligent speed optimization of fixed route ship based on real ship monitoring data[J]. Journal of Dalian Maritime University, 2018, 44(1): 31–35 (in Chinese).
[64] 刘伊凡, 张剑, 张跃文. 纵倾优化下的船舶能效数值模型[J]. 船舶工程, 2015, 37(12): 31–34, 91.

LIU Y F, ZHANG J, ZHANG Y W. Numerical model of ship energy efficiency with trim optimization[J]. Ship Engineering, 2015, 37(12): 31–34, 91 (in Chinese).
[65] 王绪明, 刘维勤, 吴昊, 等. 船舶智能纵倾控制系统[J]. 中国航海, 2018, 41(3): 59–62, 75. doi: 10.3969/j.issn.1000-4653.2018.03.012

WANG X M, LIU W Q, WU H, et al. Intelligent control system of ship trim[J]. Navigation of China, 2018, 41(3): 59–62, 75 (in Chinese). doi: 10.3969/j.issn.1000-4653.2018.03.012
[66] 段菲, 张利军, 陈鸽, 等. 基于多目标优化算法NSGA Ⅱ的极地穿梭油轮型线设计[J]. 中国舰船研究, 2017, 12(6): 66–72. doi: 10.3969/j.issn.1673-3185.2017.06.010

DUAN F, ZHANG L J, CHEN G, et al. Polar vessel hullform design based on the multi-objective optimization NSGA II[J]. Chinese Journal of Ship Research, 2017, 12(6): 66–72 (in Chinese). doi: 10.3969/j.issn.1673-3185.2017.06.010
[67] 路通. 基于主机油耗模型的船体阻力变化研究[D]. 大连: 大连海事大学, 2018.

LU T. Study on the change of hull resistance based on oil consumption model of ship's main engine[D]. Dalian: Dalian Maritime University, 2018 (in Chinese).
[68] 缪爱琴, 万德成. 基于MOPSO算法的船舶兴波阻力多目标优化[J]. 水动力学研究与进展(A辑), 2019, 34(3): 291–298.

MIAO A Q, WAN D C. Multi-objective optimization of ship wave-making resistance based on MOPSO[J]. Chinese Journal of Hydrodynamics (Ser. A), 2019, 34(3): 291–298 (in Chinese).
[69] WANG Y Y, CHAI S H, KHAN F, et al. Unscented Kalman filter trained neural networks based rudder roll stabilization system for ship in waves[J]. Applied Ocean Research, 2017, 68: 26–38. doi: 10.1016/j.apor.2017.08.007