Yan Shiwei, Jin Wenchao, Tan Dali, Tian Yun. Aerodynamic design and numerical analysis of jet cooling blast deflector[J]. Chinese Journal of Ship Research, 2019, 14(2): 99-106. DOI: 10.19693/j.issn.1673-3185.01146
Citation: Yan Shiwei, Jin Wenchao, Tan Dali, Tian Yun. Aerodynamic design and numerical analysis of jet cooling blast deflector[J]. Chinese Journal of Ship Research, 2019, 14(2): 99-106. DOI: 10.19693/j.issn.1673-3185.01146

Aerodynamic design and numerical analysis of jet cooling blast deflector

More Information
  • Received Date: January 01, 2018
  • Available Online: May 07, 2021
© 2019 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives   At present, seawater cooling jet blast deflectors are used on American and Russian aircraft carriers to protect crew and equipment from aircraft engine blasts. Although seawater cooling is effective, seawater cooling jet blast deflectors require such complex facilities as pumps and pipelines, making their maintenance inconvenient.
      Methods   With reference to the principle of film cooling on turbine vanes, this paper propose an alternative design of jet cooling for the blast deflector, using jet flows to remove and isolate high temperature flows from engine blasts. The location of slot and quantity of hole designed for film cooling on the deflector are investigated. The calculation of temperature and pressure on the deflector with different options of jet hole are made by CFD method, the cooling effect by this approach is then analyzed and validated.
      Results  The calculation results show that the jet cooling effects are equivalent to those of seawater cooling jet blast deflectors, and can reduce the average temperature of the 95% core area to acceptable levels.
      Conclusions   The jet flow cooling method is generally effective in achieving heat isolation. This numerical analysis and design method can be helpful in the research and design of passive jet blast deflectors.
  • [1]
    何庆林, 卢晶, 杨大鹏.舰载飞机发动机尾流场数值模拟[J].中国舰船研究, 2013, 8(5):13-18, 51. doi: 10.3969/j.issn.1673-3185.2013.05.003

    He Q L, Lu J, Yang D P. Numerical simulation of the flowfield of carrier-based aircraft exhaust jet[J]. Chinese Journal of Ship Research, 2013, 8(5):13-18, 51(in Chinese). doi: 10.3969/j.issn.1673-3185.2013.05.003
    [2]
    王超.舰载飞机发动机射流对甲板周围环境的影响[D].哈尔滨: 哈尔滨工程大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10217-2009060355.htm

    Wang C. The influence of aircraft engine's jet flow around ship deck[D]. Harbin: Harbin Engineering University, 2008(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-2009060355.htm
    [3]
    黄胜, 王超, 胡建.舰载飞机发动机喷流速度场研究[J].哈尔滨工程大学学报, 2009, 30(4):353-356. doi: 10.3969/j.issn.1006-7043.2009.04.002

    Haung S, Wang C, Hu J. Research on velocity field of carrier-based aircraft engine's jet flow[J]. Journal of Harbin Engineering University, 2009, 30(4):353-356(in Chinese). doi: 10.3969/j.issn.1006-7043.2009.04.002
    [4]
    徐凯.航母舰载机与偏流板的适配性研究[D].哈尔滨: 哈尔滨工程大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10217-1012265527.htm

    Xu K. Research of adaption between aircraft and jet blast deflector[D]. Harbin: Harbin Engineering University, 2011(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1012265527.htm
    [5]
    吴始栋.航母偏流板的开发与研究[J].中外船舶科技, 2008(4):9-11. http://cdmd.cnki.com.cn/Article/CDMD-10217-1011021118.htm
    [6]
    Wadley H N G, Queheillalt D T, Haj-Hariri H, et al. Method and apparatus for jet blast deflection: US, 20030164425A1[P]. 2007-06-12.
    [7]
    Tangen S. Investigating separated shear layers for passive jet blast deflector cooling[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2006.
    [8]
    Fischer E C, Sowell D A, Wehrle J, et al. Cooled jet blast deflectors for aircraft carrier flight decks: US, 6575113B1[P]. 2003-06-10.
    [9]
    Campion G. Blast deflector: US, 6802477B2[P]. 2004-10-12.
    [10]
    李昶, 邱旭, 任明其.新型折流板装置发展综述及其拓扑优化研究[J].船舶工程, 2015, 37(1):15-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201501004

    Li C, Qiu X, Ren M Q. Development of new blast deflector and research of its topology optimization[J]. Ship Engineering, 2015, 37(1):15-19(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cbgc201501004
    [11]
    王军旗, 李素循, 倪招勇, 等.数值模拟侧向超声速单喷流干扰流场特性[J].宇航学报, 2007, 28(3):598-602. doi: 10.3321/j.issn:1000-1328.2007.03.018

    Wang J Q, Li S X, Ni Z Y, et al. Numerical simulation of characteristics of supersonic jet interaction flowfields[J]. Journal of Astronautics, 2007, 28(3):598-602(in Chinese). doi: 10.3321/j.issn:1000-1328.2007.03.018
    [12]
    赵飞, 张延玲, 朱荣, 等.超音速射流流场中湍流模型[J].北京科技大学学报, 2014, 36(3):366-372. http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201403014

    Zhao F, Zhang Y L, Zhu R, et al. Turbulence model in supersonic jet flowfield[J]. Journal of University of Science and Technology Beijing, 2014, 36(3):366-372(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjkjdxxb201403014
    [13]
    赵留平.舰载机发动机喷管高温高压流动特性仿真分析[J].舰船科学技术, 2016, 38(1):145-149. doi: 10.3404/j.issn.1672-7649.2016.1.031

    Zhao L P. Numerical simulation for high temperature and high pressure flowfield of aircraft engine jet impingement[J]. Ship Science and Technology, 2016, 38(1):145-149(in Chinese). doi: 10.3404/j.issn.1672-7649.2016.1.031
    [14]
    王松涛, 冯国泰, 王仲奇, 等.尾喷管内部及其射流流场的数值模拟[J].推进技术, 2000, 21(3):53-55. doi: 10.3321/j.issn:1001-4055.2000.03.016

    Wang S T, Feng G T, Wang Z Q, et al. Numerical simulation of performance and jet flowfield of the nozzle[J]. Journal of Propulsion Technology, 2000, 21(3):53-55(in Chinese). doi: 10.3321/j.issn:1001-4055.2000.03.016
    [15]
    赵一鹗, 余少志.复杂几何形状喷管内外三维流场的数值模拟[J].推进技术, 2000, 21(3):30-33. doi: 10.3321/j.issn:1001-4055.2000.03.009

    Zhao Y E, Yu S Z. Numerical simulation on internal and external flowfields of nozzle with complex geometry[J]. Journal of Propulsion Technology, 2000, 21(3):30-33(in Chinese). doi: 10.3321/j.issn:1001-4055.2000.03.009
    [16]
    Gerolymos G A, Vallet I, BöLcs P O, et al. Computation of unsteady three-dimensional transonic nozzle flows using k-ε turbulence closure[J]. AIAA Journal, 1996, 34(7):1331-1340. doi: 10.2514/3.13237
    [17]
    Hoffmann K A, Suzen Y B, Papadakis M. Numerical computation of high speed exhaust flows: AIAA 95-0758[R]. Reno, NV, U.S.A: AIAA, 1995.
    [18]
    乔渭阳, 蔡元虎, 齐少军, 等.次流喷射控制推力矢量喷管的流场数值模拟[J].推进技术, 2000, 21(6):18-20, 35. doi: 10.3321/j.issn:1001-4055.2000.06.005

    Qiao W Y, Cai Y H, Qi S J, et al. Flowfield numerical modeling of the thrust vector control nozzle based on secondary flow injection[J]. Journal of Propulsion Technology, 2000, 21(6):18-20, 35(in Chinese). doi: 10.3321/j.issn:1001-4055.2000.06.005
    [19]
    黄胜, 王超.基于的偏流导流板的初步设计[C]//黑龙江省造船工程学会2007年学会年会文集.[S.l.: s.n.], 2007.
    [20]
    黄爱华, 段红春.某大型运输机发动机尾喷口射流参数研究[J].中国工程机械学报, 2016, 14(3):277-280. doi: 10.3969/j.issn.1672-5581.2016.03.018

    Huang A H, Duan H C. Parametric study on engine nozzle jet for specific large aerotransport[J]. Chinese Journal of Construction Machinery, 2016, 14(3):277-280(in Chinese). doi: 10.3969/j.issn.1672-5581.2016.03.018
    [21]
    郭涛.偏流板性能的分析与计算[D].哈尔滨: 哈尔滨工程大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10217-1011021118.htm

    Guo T. Performance analysis and calculation of drift plate[D]. Harbin: Harbin Engineering University, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10217-1011021118.htm

Catalog

    Article views (586) PDF downloads (112) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return