WANG Qi, YUAN Jiansheng, ZHAO Qiming. Inductance calculation of submarine DC transmission line based on finite element analysis[J]. Chinese Journal of Ship Research, 2018, 13(1): 114-119. DOI: 10.3969/j.issn.1673-3185.2018.01.017
Citation: WANG Qi, YUAN Jiansheng, ZHAO Qiming. Inductance calculation of submarine DC transmission line based on finite element analysis[J]. Chinese Journal of Ship Research, 2018, 13(1): 114-119. DOI: 10.3969/j.issn.1673-3185.2018.01.017

Inductance calculation of submarine DC transmission line based on finite element analysis

More Information
  • Received Date: May 08, 2017
  • Available Online: May 07, 2021
© 2018 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  •   Objectives  Because of the characteristics of submarine direct current (DC) transmission cables, traditional circuit inductance calculation methods are unable to fit the system. There is a big error between the calculating value and the actual value. This paper studies the finite element method to reduce the calculation error.
      Methods  The applicability of common line inductance calculation formulas to submarine DC system is discussed firstly. Then a short-circuit testing system is set up. The inductance of circuit in the system is measured, and a simulation model of the testing system is established. For a comparing purpose, the total inductance of the line is calculated by finite element analysis in the ANSYS/Maxwell software too. With the inductance values, the equivalent circuit model of the testing system is simulated in the Matlab/Simulink software. The simulation waveforms of the short-circuit current and the measured waveform are analyzed and compared.
      Results   The result shows that the finite element analysis method is able to improve the accuracy of calculation of submarine DC transmission line equivalent inductance, and reduce the error in DC power system transient analysis.
      Conclusions  The achievement can provide support for further simulation model development and calculation method research.
  • [1]
    AURILIO G, GALLO D, LANDI C, et al. A battery equivalent-circuit model and an advanced technique for parameter estimation[C]//2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Pisa: IEEE, 2015: 1705-1710.
    [2]
    李大鹏, 张晓东.俄罗斯非核动力潜艇推进系统的选择与发展趋势[J].中国舰船研究, 2011, 6(6): 102-108. http://118.145.16.233/Jweb_zgjcyj/CN/abstract/abstract16.shtml

    LI D P, ZHANG X D. Solutions and development trends of Russian navy's non-nuclear submarine propulsion system[J]. Chinese Journal of Ship Research, 2011, 6(6): 102-108(in Chinese). http://118.145.16.233/Jweb_zgjcyj/CN/abstract/abstract16.shtml
    [3]
    厉行军, 赵建华, 杨建冰, 等.现代潜艇铅酸蓄电池充电模型[J].舰船科学技术, 2011, 33(4): 58-61. https://www.wenkuxiazai.com/doc/c52a1303650e52ea5518988d.html

    LI X J, ZHAO J H, YANG J B, et al. Research on the charge model of lead-acid batteries onboard modern submarines[J]. Ship Science and Technology, 2011, 33(4): 58-61(in Chinese). https://www.wenkuxiazai.com/doc/c52a1303650e52ea5518988d.html
    [4]
    范昕.舰船电力系统电磁兼容性研究现状综述[J].中国舰船研究, 2013, 8(3): 78-84. http://118.145.16.233/Jweb_zgjcyj/CN/abstract/abstract900.shtml

    FAN X. A review of the research status on the EMC of ship power systems[J]. Chinese Journal of Ship Research, 2013, 8(3): 78-84(in Chinese). http://118.145.16.233/Jweb_zgjcyj/CN/abstract/abstract900.shtml
    [5]
    李杰, 单潮龙. DC电缆模型对电磁干扰仿真的影响[J].船电技术, 2010, 30(4): 14-19. https://www.wenkuxiazai.com/doc/af9904dada38376bae1fae15.html

    LI J, SHAN C L. DC cable model affection to simulation of EMI[J]. Marine Electric & Electronic Technology, 2010, 30(4): 14-19(in Chinese). https://www.wenkuxiazai.com/doc/af9904dada38376bae1fae15.html
    [6]
    董艺, 胡铁军, 张灿淋, 等.高压电缆线路序阻抗参数的精确计算研究[J].电力科学与工程, 2013, 29(10): 6-12. doi: 10.3969/j.issn.1672-0792.2013.10.002

    DONG Y, HU T J, ZHANG C L, et al. The accurate calculation of high voltage cable line's sequence impedance[J]. Electric Power Science and Engineering, 2013, 29(10): 6-12(in Chinese). doi: 10.3969/j.issn.1672-0792.2013.10.002
    [7]
    AKKARI S, PRIETO-ARAUJOY E, DAI J, et al. Impact of the DC cable models on the SVD analysis of a multi-terminal HVDC system[C]//Proceedings of 2016 Power Systems Computation Conference (PSCC). Hong Kong, China: IEEE, 2016: 1-6.
    [8]
    杜学龙, 王智新, 邹军.考虑大地影响高速铁路轨道电路互阻抗快速计算简化公式[J].电工技术学报, 2016, 31(4): 1-6. http://mall.cnki.net/magazine/magadetail/DGJS201604.htm

    DU X L, WANG Z X, ZOU J. A fast and simplified formula for calculating the mutual impedance with the earth return of the high-speed railway track circuit[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 1-6(in Chinese). http://mall.cnki.net/magazine/magadetail/DGJS201604.htm
    [9]
    马信山, 张济世, 王平.电磁场基础[M].北京:清华大学出版社, 1995: 128-142.
    [10]
    邱关源.电路[M]. 4版.北京:高等教育出版社, 1999: 12-14.
    [11]
    何仰赞.电力系统分析(上)[M]. 4版.武汉:华中科技大学出版社, 2016: 10-18.
    [12]
    辛瑞昊, 熊庆辉, 王浚哲, 等.基于Maxwell的电磁阀仿真与分析[J].长春理工大学学报(自然科学版), 2015, 38(2): 113-116. http://www.docin.com/p-1290141201.html

    XIN R H, XIONG Q H, WANG J Z, et al. Simulation and analysis of soleniod valves based on Maxwell[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2015, 38(2): 113-116(in Chinese). http://www.docin.com/p-1290141201.html
    [13]
    何淼, CHEN G, LEWIN P L.内部缺陷对高压直流电缆电场分布影响的有限元分析[J].南方电网技术, 2015, 9(10): 83-91. http://mall.cnki.net/magazine/Article/NFDW201510016.htm

    HE M, CHEN G, LEWIN P L. Analysis on influence of internal defect on electric field distortion of HVDC cable with finite element method[J]. Southern Power System Technology, 2015, 9(10): 83-91(in Chinese). http://mall.cnki.net/magazine/Article/NFDW201510016.htm
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 田野,余墨多,黄文焘,邰能灵,牛璐. 基于倾斜关联筛选的船舶分区消磁绕组部署及消磁电流优化策略. 上海交通大学学报. 2024(07): 1018-1026 .
    2. 周国华,唐烈峥,孙兆龙,吴轲娜,李志新. 考虑船体涡流影响的舰船消磁线圈电感计算方法. 兵工学报. 2022(11): 2866-2874 .
    3. 薛小翠. 基于有限元法的高压直流输电线路电场强度值模拟研究. 自动化与仪器仪表. 2020(02): 125-127+131 .
    4. 阳璞琼,张锦涛,王新林,何正熙,郑杲. 核反应堆棒控电源电路仿真与优化. 核技术. 2020(09): 39-45 .
    5. 张友鹏,王东,赵斌,赵珊鹏. 基于管状导体模型钢轨内阻抗计算. 中南大学学报(自然科学版). 2020(10): 2988-2997 .
    6. 张聆玲,钟进蓉. 船体梁结构强度的非线性有限元分析. 舰船科学技术. 2019(06): 10-12 .
    7. 邢剑,袁建生,王琦. 艇用大容量铅酸电池短路特性测试与分析. 电池. 2019(04): 325-328 .

    Other cited types(0)

Catalog

    Article views (444) PDF downloads (161) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return