XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. DOI: 10.3969/j.issn.1673-3185.2017.01.008
Citation: XIE Qiang, CHEN Hailong, ZHANG Jifeng. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms[J]. Chinese Journal of Ship Research, 2017, 12(1): 45-53. DOI: 10.3969/j.issn.1673-3185.2017.01.008

Research progress of anti-icing/deicing technologies for polar ships and offshore platforms

More Information
  • Received Date: May 16, 2016
  • Available Online: May 07, 2021
© 2017 The Authors. Published by Editorial Office of Chinese Journal of Ship Research. Creative Commons License
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • The polar regions present adverse circumstances of high humidity and strong air-sea exchange. As such, the surfaces of ships and platforms (oil exploiting and drilling platforms) serving in polar regions can easily be frozen by ice accretion, which not only affects the operation of the equipment but also threatens safety. This paper summarizes the status of the anti-icing/deicing technologies of both China and abroad for polar ships and offshore platforms, and introduces the various effects of ice accretion on polar ships and offshore platforms, and the resulting safety impacts. It then reviews existing anti-icing/deicing technologies and methods of both China and abroad, including such active deicing methods as electric heating, infrared heating and ultrasonic guided wave deicing, as well as such passive deicing methods as super hydrophobic coating, sacrificial coating, aqueous lubricating layer coating and low cross-link density (with interfacial slippage) coating, summarizes their applicability to polar ships and offshore platforms, and finally discusses their advantages/disadvantages.
  • [1]
    BIRD K J, CHARPENTIER R R, GAUTIER D L, et al. Circum-arctic resource appraisal:estimates of un-discovered oil and gas north of the arctic circle[R]. Reston, VA:The Uninted States, Geological Survey (USGS) National Center, 2008.
    [2]
    GAUTIER D L, BIRD K J, CHARPENTIER R R, et al. Assessment of undiscovered oil and gas in the arctic[J]. Science, 2009, 324(5931):1175-1179. doi: 10.1126/science.1169467
    [3]
    朱英富, 刘祖源, 解德, 等.极地船舶核心关键基础技术现状及我国发展对策[J].中国科学基金, 2015(3):178-186. http://pub.nsfc.gov.cn/sficcn/ch/reader/create_pdf.aspx?file_no=201503178&flag=1&journal_id=sficcn&year_id=2015

    ZHU Y F, LIU Z Y, XIE D, et al. Advancements of the core fundamental technologies and strategies of Chi-na regarding the research and development on polar ships[J]. Bulletin of National Natural Science Founda-tion of China, 2015(3):178-186(in Chinese). http://pub.nsfc.gov.cn/sficcn/ch/reader/create_pdf.aspx?file_no=201503178&flag=1&journal_id=sficcn&year_id=2015
    [4]
    JONES K F, ANDREAS E L. Sea spray icing of drill-ing and production platforms:ERDC/CRREL TR-09-3[R]. Hanover, NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory, 2009.
    [5]
    HORJEN I. Ice accretions on ships and marine struc-tures[R]. Trondheim, Norway:The River and Har-bour Laboratory, 1989.
    [6]
    BATTISTI L, FEDRIZZI R, BRIGHENTI A, et al. Sea ice and icing risk for offshore wind turbines[C]//Proceedings of the OWEMES 2006. Citavecchia, Ita-ly:[s.n.], 2006.
    [7]
    SAMUELSEN E M, LØSET S, EDVARDSEN K. Ma-rine icing observed on KV Nordkapp during a cold air outbreak with a developing polar low in the Barents sea[C]//Proceedings of the 23rd International Conference on Port and Ocean Engineering under Arctic Condi-tions. Trondheim, Norway:[s.n.], 2015.
    [8]
    HORJEN I. Offshore drilling rig ice accretion modeling including a surficial brine film[J]. Cold Regions Sci-ence and Technology, 2015, 119:84-110. doi: 10.1016/j.coldregions.2015.07.006
    [9]
    RYERSON C C. Superstructure spray and ice accretion on a large U.S. Coast Guard cutter[J]. Atmospheric Research, 1995, 36(3/4):321-337.
    [10]
    JONES K F, ANDREAS E L. Sea spray concentra-tions and the icing of fixed offshore structures[J]. Quarterly Journal of the Royal Meteorological Soci-ety, 2012, 138(662):131-144. doi: 10.1002/qj.v138.662
    [11]
    MAKKONEN L. Atmospheric icing on sea structures:AD-AI44448[R]. Hanover, NH:US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, 1984.
    [12]
    RYERSON C C. Ice protection of offshore platforms[J]. Cold Regions Science and Technology, 2011, 65(1):97-110. doi: 10.1016/j.coldregions.2010.02.006
    [13]
    CAMMAERT G. Marine icing on arctic offshore opera-tions[R].[S.l.]:Maritiem Innovatie Platform, 2013.
    [14]
    WOLD L E. A study of the changes in freeboard, sta-bility and motion response of ships and semi-submers-ible platforms due to vessel icing[D]. Stavanger:University of Stavanger, 2014.
    [15]
    GAUTHIER G P, COURTAY A, REBEIZ G M. Mi-crostrip antennas on synthesized low dielectric-con-stant substrates[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(8):1310-1314. doi: 10.1109/8.611252
    [16]
    薛国善.船舶冬季防冻防滑工作[J].世界海运, 2013, 36(3):30-31. http://www.cnki.com.cn/Article/CJFDTOTAL-HYZZ201303014.htm
    [17]
    RYERSON C C. Assessment of superstructure ice pro-tection as applied to offshore oil operations safety:ERDC/CRREL TR-08-14[R]. Hanover, NH:US Army Corps of Engineerings, Engineer Research and Development Center & Cold Regions Research and Engineering Laboratory, 2009.
    [18]
    Polarcus vessel photos[DB/OL]. (2015-02-17)[2016-05-09]. http://www.polarcus.com/media/1290/polarcus-alima-lr.jpg.
    [19]
    陆煊, 崔玫, 曹洪波, 等.船舶防冻除冰技术现状与发展[J].船海工程, 2016, 45(2):37-39. http://www.cqvip.com/QK/95343X/201602/668579349.html

    LU X, CUI M, CAO H B, et al. Present situation and development of de-icing and prevent frostbite technol-ogy of ships[J]. Ship & Ocean Engineering, 2016, 45(2):37-39(in Chinese). http://www.cqvip.com/QK/95343X/201602/668579349.html
    [20]
    VILLENEUVE E, HARVEY D, ZIMCIK D, et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society, 2015, 60(4):1-12.
    [21]
    PALACIOS J, SMITH E, ROSE J, et al. Instanta-neous de-icing of freezer ice via ultrasonic actuation[J]. AIAA Journal, 2011, 49(6):1158-1167. doi: 10.2514/1.J050143
    [22]
    WÅHLIN J, KLEIN-PASTE A. The effect of com-mon deicing chemicals on the hardness of compacted snow[J]. Cold Regions Science and Technology, 2015, 109:28-32. doi: 10.1016/j.coldregions.2014.09.007
    [23]
    WÅHLIN J, LEISINGER S, KLEIN-PASTE A. The effect of sodium chloride solution on the hardness of compacted snow[J]. Cold Regions Science and Tech-nology, 2014, 102:1-7. doi: 10.1016/j.coldregions.2014.02.002
    [24]
    王冠, 张德远, 陈华伟.飞机防冰-从传统到仿生的发展[J].工业技术创新, 2014, 1(2):241-250. http://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201402021.htm

    WANG G, ZHANG D Y, CHEN H W. The develop-ment of aircraft anti-icing-from traditional to bionic[J]. Industrial Technology Innovation, 2014, 1(2):241-250(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201402021.htm
    [25]
    AYRES J, SIMENDINGER W H, BALIK C M. Char-acterization of titanium alkoxide sol-gel systems de-signed for anti-icing coatings:I. Chemistry[J]. Jour-nal of Coatings Technology and Research, 2007, 4(4):463-471. doi: 10.1007/s11998-007-9054-8
    [26]
    WONG T S, KANG S H, TANG S K Y, et al. Bioin-spired self-repairing slippery surfaces with pres-sure-stable omni-phobicity[J]. Nature, 2011, 477(7365):443-447. doi: 10.1038/nature10447
    [27]
    KIM P, WONG T S, ALVARENGA J, et al. Liq-uid-infused nanostructured surfaces with extreme an-ti-ice and anti-frost performance[J]. ACS Nano, 2012, 6(8):6569-6577. doi: 10.1021/nn302310q
    [28]
    LEE J W, HWANG W. Exploiting the silicon content of aluminum alloys to create a superhydrophobic sur-face using the sol-gel process[J]. Materials Letters, 2016, 168:83-85. doi: 10.1016/j.matlet.2015.12.137
    [29]
    LEI H, XIAO J, ZHENG L P, et al. Superhydropho-bic coatings based on colloid silica and fluorocopoly-mer[J]. Polymer, 2016, 86:22-31. doi: 10.1016/j.polymer.2016.01.026
    [30]
    PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science, 2013, 395:326-328. doi: 10.1016/j.jcis.2012.12.036
    [31]
    HUANG Y, SARKAR D K, CHEN X G. Superhydro-phobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance proper-ties[J]. Applied Surface Science, 2015, 356:1012-1024. doi: 10.1016/j.apsusc.2015.08.166
    [32]
    WANG Y Y, XUE J, WANG Q J, et al. Verification of icephobic/anti-icing properties of a superhydropho-bic surface[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3370-3381. https://www.researchgate.net/publication/236088542_Verification_of_IcephobicAnti-icing_Properties_of_A_Superhydrophobic_Surface
    [33]
    MEULER A J, SMITH J D, VARANASI K K, et al. Relationships between water wettability and ice adhe-sion[J]. ACS Applied Materials & Interfaces, 2010, 2(11):3100-3110. http://web.mit.edu/nnf/publications/GHM153.pdf
    [34]
    FARHADI S, FARZANEH M, KULINICH S A. An-ti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science, 2011, 257(14):6264-6269. doi: 10.1016/j.apsusc.2011.02.057
    [35]
    LEE C, NAM Y, LASTAKOWSKI H, et al. Two types of Cassie-to-Wenzel wetting transitions on su-perhydrophobic surfaces during drop impact[J]. Soft Matter, 2015, 11(23):4592-4599. doi: 10.1039/C5SM00825E
    [36]
    DOU R M, CHEN J, ZHANG Y F, et al. Anti-icing coating with an aqueous lubricating layer[J]. ACS Applied Materials & Interfaces, 2014, 6(10):6998-7003. https://www.researchgate.net/profile/Yanlin_Song/publication/262340912_Anti-icing_Coating_with_an_Aqueous_Lubricating_Layer/links/55cb0bb108aeca747d69fdef.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [37]
    GOLOVIN K, KOBAKU S P R, LEE D H, et al. De-signing durable icephobic surfaces[J]. Science Ad-vances, 2016, 2(3):e1501496. doi: 10.1126/sciadv.1501496

Catalog

    Article views (1544) PDF downloads (378) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return